Cargando…

Stoichiometry of Root and Leaf Nitrogen and Phosphorus in a Dry Alpine Steppe on the Northern Tibetan Plateau

Leaf nitrogen (N) and phosphorus (P) have been used widely in the ecological stoichiometry to understand nutrient limitation in plant. However,few studies have focused on the relationship between root nutrients and environmental factors. The main objective of this study was to clarify the pattern of...

Descripción completa

Detalles Bibliográficos
Autores principales: Hong, Jiangtao, Wang, Xiaodan, Wu, Jianbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192305/
https://www.ncbi.nlm.nih.gov/pubmed/25299642
http://dx.doi.org/10.1371/journal.pone.0109052
_version_ 1782338754661318656
author Hong, Jiangtao
Wang, Xiaodan
Wu, Jianbo
author_facet Hong, Jiangtao
Wang, Xiaodan
Wu, Jianbo
author_sort Hong, Jiangtao
collection PubMed
description Leaf nitrogen (N) and phosphorus (P) have been used widely in the ecological stoichiometry to understand nutrient limitation in plant. However,few studies have focused on the relationship between root nutrients and environmental factors. The main objective of this study was to clarify the pattern of root and leaf N and P concentrations and the relationships between plant nitrogen (N) and phosphorus (P) concentrations with climatic factors under low temperature conditions in the northern Tibetan Plateau of China. We conducted a systematic census of N and P concentrations, and the N∶P ratio in leaf and root for 139 plant samples, from 14 species and 7 families in a dry Stipa purpurea alpine steppe on the northern Tibetan Plateau of China. The results showed that the mean root N and P concentrations and the N∶P ratios across all species were 13.05 mg g(−1), 0.60 mg g(−1) and 23.40, respectively. The mean leaf N and P concentrations and the N∶P ratio were 23.20 mg g(−1), 1.38 mg g(−1), and 17.87, respectively. Compared to global plant nutrients concentrations, plants distributing in high altitude area have higher N concentrations and N∶P, but lower P concentrations, which could be used to explain normally-observed low growth rate of plant in the cold region. Plant N concentrations were unrelated to the mean annual temperature (MAT). The root and leaf P concentrations were negatively correlated with the MAT, but the N∶P ratios were positively correlated with the MAT. It is highly possible this region is not N limited, it is P limited, thus the temperature-biogeochemical hypothesis (TBH) can not be used to explain the relationship between plant N concentrations and MAT in alpine steppe. The results were valuable to understand the bio-geographic patterns of root and leaf nutrients traits and modeling ecosystem nutrient cycling in cold and dry environments.
format Online
Article
Text
id pubmed-4192305
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-41923052014-10-14 Stoichiometry of Root and Leaf Nitrogen and Phosphorus in a Dry Alpine Steppe on the Northern Tibetan Plateau Hong, Jiangtao Wang, Xiaodan Wu, Jianbo PLoS One Research Article Leaf nitrogen (N) and phosphorus (P) have been used widely in the ecological stoichiometry to understand nutrient limitation in plant. However,few studies have focused on the relationship between root nutrients and environmental factors. The main objective of this study was to clarify the pattern of root and leaf N and P concentrations and the relationships between plant nitrogen (N) and phosphorus (P) concentrations with climatic factors under low temperature conditions in the northern Tibetan Plateau of China. We conducted a systematic census of N and P concentrations, and the N∶P ratio in leaf and root for 139 plant samples, from 14 species and 7 families in a dry Stipa purpurea alpine steppe on the northern Tibetan Plateau of China. The results showed that the mean root N and P concentrations and the N∶P ratios across all species were 13.05 mg g(−1), 0.60 mg g(−1) and 23.40, respectively. The mean leaf N and P concentrations and the N∶P ratio were 23.20 mg g(−1), 1.38 mg g(−1), and 17.87, respectively. Compared to global plant nutrients concentrations, plants distributing in high altitude area have higher N concentrations and N∶P, but lower P concentrations, which could be used to explain normally-observed low growth rate of plant in the cold region. Plant N concentrations were unrelated to the mean annual temperature (MAT). The root and leaf P concentrations were negatively correlated with the MAT, but the N∶P ratios were positively correlated with the MAT. It is highly possible this region is not N limited, it is P limited, thus the temperature-biogeochemical hypothesis (TBH) can not be used to explain the relationship between plant N concentrations and MAT in alpine steppe. The results were valuable to understand the bio-geographic patterns of root and leaf nutrients traits and modeling ecosystem nutrient cycling in cold and dry environments. Public Library of Science 2014-10-09 /pmc/articles/PMC4192305/ /pubmed/25299642 http://dx.doi.org/10.1371/journal.pone.0109052 Text en © 2014 Hong et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Hong, Jiangtao
Wang, Xiaodan
Wu, Jianbo
Stoichiometry of Root and Leaf Nitrogen and Phosphorus in a Dry Alpine Steppe on the Northern Tibetan Plateau
title Stoichiometry of Root and Leaf Nitrogen and Phosphorus in a Dry Alpine Steppe on the Northern Tibetan Plateau
title_full Stoichiometry of Root and Leaf Nitrogen and Phosphorus in a Dry Alpine Steppe on the Northern Tibetan Plateau
title_fullStr Stoichiometry of Root and Leaf Nitrogen and Phosphorus in a Dry Alpine Steppe on the Northern Tibetan Plateau
title_full_unstemmed Stoichiometry of Root and Leaf Nitrogen and Phosphorus in a Dry Alpine Steppe on the Northern Tibetan Plateau
title_short Stoichiometry of Root and Leaf Nitrogen and Phosphorus in a Dry Alpine Steppe on the Northern Tibetan Plateau
title_sort stoichiometry of root and leaf nitrogen and phosphorus in a dry alpine steppe on the northern tibetan plateau
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192305/
https://www.ncbi.nlm.nih.gov/pubmed/25299642
http://dx.doi.org/10.1371/journal.pone.0109052
work_keys_str_mv AT hongjiangtao stoichiometryofrootandleafnitrogenandphosphorusinadryalpinesteppeonthenortherntibetanplateau
AT wangxiaodan stoichiometryofrootandleafnitrogenandphosphorusinadryalpinesteppeonthenortherntibetanplateau
AT wujianbo stoichiometryofrootandleafnitrogenandphosphorusinadryalpinesteppeonthenortherntibetanplateau