Cargando…
A comparison of three clustering methods for finding subgroups in MRI, SMS or clinical data: SPSS TwoStep Cluster analysis, Latent Gold and SNOB
BACKGROUND: There are various methodological approaches to identifying clinically important subgroups and one method is to identify clusters of characteristics that differentiate people in cross-sectional and/or longitudinal data using Cluster Analysis (CA) or Latent Class Analysis (LCA). There is a...
Autores principales: | Kent, Peter, Jensen, Rikke K, Kongsted, Alice |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192340/ https://www.ncbi.nlm.nih.gov/pubmed/25272975 http://dx.doi.org/10.1186/1471-2288-14-113 |
Ejemplares similares
-
Identifying clinical course patterns in SMS data using cluster analysis
por: Kent, Peter, et al.
Publicado: (2012) -
Diario de un snob : 2
por: Umbral, Francisco
Publicado: (1978) -
El libro de los snobs.
por: Thackeray, William Makepeace, 1811-1863
Publicado: (1945) -
How can latent trajectories of back pain be translated into defined subgroups?
por: Kongsted, Alice, et al.
Publicado: (2017) -
Saliva TwoStep for rapid detection of asymptomatic SARS-CoV-2 carriers
por: Yang, Qing, et al.
Publicado: (2021)