Cargando…

Assessment of metal artifacts in three-dimensional dental surface models derived by cone-beam computed tomography

OBJECTIVE: The aim of this study was to assess artifacts induced by metallic restorations in three-dimensional (3D) dental surface models derived by cone-beam computed tomography (CBCT). METHODS: Fifteen specimens, each with four extracted human premolars and molars embedded in a plaster block, were...

Descripción completa

Detalles Bibliográficos
Autores principales: Nabha, Wael, Hong, Young-Min, Cho, Jin-Hyoung, Hwang, Hyeon-Shik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Association of Orthodontists 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192524/
https://www.ncbi.nlm.nih.gov/pubmed/25309862
http://dx.doi.org/10.4041/kjod.2014.44.5.229
Descripción
Sumario:OBJECTIVE: The aim of this study was to assess artifacts induced by metallic restorations in three-dimensional (3D) dental surface models derived by cone-beam computed tomography (CBCT). METHODS: Fifteen specimens, each with four extracted human premolars and molars embedded in a plaster block, were scanned by CBCT before and after the cavitated second premolars were restored with dental amalgam. Five consecutive surface models of each specimen were created according to increasing restoration size: no restoration (control) and small occlusal, large occlusal, disto-occlusal, and mesio-occluso-distal restorations. After registering each restored model with the control model, maximum linear discrepancy, area, and intensity of the artifacts were measured and compared. RESULTS: Artifacts developed mostly on the buccal and lingual surfaces. They occurred not only on the second premolar but also on the first premolar and first molar. The parametric values increased significantly with increasing restoration size. CONCLUSIONS: Metallic restorations induce considerable artifacts in 3D dental surface models. Artifact reduction should be taken into consideration for a proper diagnosis and treatment planning when using 3D surface model derived by CBCT in dentofacial deformity patients.