Cargando…
Fra-1 regulation of Matrix Metallopeptidase-1 (MMP-1) in metastatic variants of MDA-MB-231 breast cancer cells
Matrix Metallopeptidase 1 (MMP-1) expression has repeatedly been correlated to tumorigenesis and metastasis. Yet, MMP-1 regulation in a metastatic context remains largely unknown. Here we confirm differential MMP-1 expression in mammary carcinoma cells with varied metastatic potentials. We show th...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000Research
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193399/ https://www.ncbi.nlm.nih.gov/pubmed/25339983 http://dx.doi.org/10.12688/f1000research.2-229.v1 |
Sumario: | Matrix Metallopeptidase 1 (MMP-1) expression has repeatedly been correlated to tumorigenesis and metastasis. Yet, MMP-1 regulation in a metastatic context remains largely unknown. Here we confirm differential MMP-1 expression in mammary carcinoma cells with varied metastatic potentials. We show that MMP-1 expression is regulated by an AP-1 element in its promoter in highly metastatic MDA-MB-231 mammary carcinoma cell derivatives. Fra-1, an AP-1 family transcription factor, differentially binds this element in highly metastatic cells compared to low metastatic cells and is required for MMP-1 expression. Overexpression of Fra-1 also caused increased MMP-1 expression. Fra-1 mRNA levels are unchanged in the cell variants, however its protein levels are higher in the metastatic cells. While there was no change in Fra-1 protein degradation rates, protein synthesis of Fra-1 was increased in the metastatic cell variant. These results demonstrate that Fra-1 and MMP-1 levels are differentially regulated in metastatic cell variants at the level of Fra-1 protein translation. Consistent with the importance of Fra-1 for tumor growth, we found that Fra-1 overexpression was sufficient to increase cell motility and anchorage independent growth. These results suggest that increased Fra-1 translation is critical for regulation of MMP-1 and tumor cell metastasis. |
---|