Cargando…
Systematic analysis of T7 RNA polymerase based in vitro linear RNA amplification for use in microarray experiments
BACKGROUND: The requirement of a large amount of high-quality RNA is a major limiting factor for microarray experiments using biopsies. An average microarray experiment requires 10–100 μg of RNA. However, due to their small size, most biopsies do not yield this amount. Several different approaches f...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC419340/ https://www.ncbi.nlm.nih.gov/pubmed/15119961 http://dx.doi.org/10.1186/1471-2164-5-29 |
_version_ | 1782121431180509184 |
---|---|
author | Schneider, Jörg Buneß, Andreas Huber, Wolfgang Volz, Joachim Kioschis, Petra Hafner, Mathias Poustka, Annemarie Sültmann, Holger |
author_facet | Schneider, Jörg Buneß, Andreas Huber, Wolfgang Volz, Joachim Kioschis, Petra Hafner, Mathias Poustka, Annemarie Sültmann, Holger |
author_sort | Schneider, Jörg |
collection | PubMed |
description | BACKGROUND: The requirement of a large amount of high-quality RNA is a major limiting factor for microarray experiments using biopsies. An average microarray experiment requires 10–100 μg of RNA. However, due to their small size, most biopsies do not yield this amount. Several different approaches for RNA amplification in vitro have been described and applied for microarray studies. In most of these, systematic analyses of the potential bias introduced by the enzymatic modifications are lacking. RESULTS: We examined the sources of error introduced by the T7 RNA polymerase based RNA amplification method through hybridisation studies on microarrays and performed statistical analysis of the parameters that need to be evaluated prior to routine laboratory use. The results demonstrate that amplification of the RNA has no systematic influence on the outcome of the microarray experiment. Although variations in differential expression between amplified and total RNA hybridisations can be observed, RNA amplification is reproducible, and there is no evidence that it introduces a large systematic bias. CONCLUSIONS: Our results underline the utility of the T7 based RNA amplification for use in microarray experiments provided that all samples under study are equally treated. |
format | Text |
id | pubmed-419340 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2004 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-4193402004-05-28 Systematic analysis of T7 RNA polymerase based in vitro linear RNA amplification for use in microarray experiments Schneider, Jörg Buneß, Andreas Huber, Wolfgang Volz, Joachim Kioschis, Petra Hafner, Mathias Poustka, Annemarie Sültmann, Holger BMC Genomics Research Article BACKGROUND: The requirement of a large amount of high-quality RNA is a major limiting factor for microarray experiments using biopsies. An average microarray experiment requires 10–100 μg of RNA. However, due to their small size, most biopsies do not yield this amount. Several different approaches for RNA amplification in vitro have been described and applied for microarray studies. In most of these, systematic analyses of the potential bias introduced by the enzymatic modifications are lacking. RESULTS: We examined the sources of error introduced by the T7 RNA polymerase based RNA amplification method through hybridisation studies on microarrays and performed statistical analysis of the parameters that need to be evaluated prior to routine laboratory use. The results demonstrate that amplification of the RNA has no systematic influence on the outcome of the microarray experiment. Although variations in differential expression between amplified and total RNA hybridisations can be observed, RNA amplification is reproducible, and there is no evidence that it introduces a large systematic bias. CONCLUSIONS: Our results underline the utility of the T7 based RNA amplification for use in microarray experiments provided that all samples under study are equally treated. BioMed Central 2004-04-30 /pmc/articles/PMC419340/ /pubmed/15119961 http://dx.doi.org/10.1186/1471-2164-5-29 Text en Copyright © 2004 Schneider et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. |
spellingShingle | Research Article Schneider, Jörg Buneß, Andreas Huber, Wolfgang Volz, Joachim Kioschis, Petra Hafner, Mathias Poustka, Annemarie Sültmann, Holger Systematic analysis of T7 RNA polymerase based in vitro linear RNA amplification for use in microarray experiments |
title | Systematic analysis of T7 RNA polymerase based in vitro linear RNA amplification for use in microarray experiments |
title_full | Systematic analysis of T7 RNA polymerase based in vitro linear RNA amplification for use in microarray experiments |
title_fullStr | Systematic analysis of T7 RNA polymerase based in vitro linear RNA amplification for use in microarray experiments |
title_full_unstemmed | Systematic analysis of T7 RNA polymerase based in vitro linear RNA amplification for use in microarray experiments |
title_short | Systematic analysis of T7 RNA polymerase based in vitro linear RNA amplification for use in microarray experiments |
title_sort | systematic analysis of t7 rna polymerase based in vitro linear rna amplification for use in microarray experiments |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC419340/ https://www.ncbi.nlm.nih.gov/pubmed/15119961 http://dx.doi.org/10.1186/1471-2164-5-29 |
work_keys_str_mv | AT schneiderjorg systematicanalysisoft7rnapolymerasebasedinvitrolinearrnaamplificationforuseinmicroarrayexperiments AT buneßandreas systematicanalysisoft7rnapolymerasebasedinvitrolinearrnaamplificationforuseinmicroarrayexperiments AT huberwolfgang systematicanalysisoft7rnapolymerasebasedinvitrolinearrnaamplificationforuseinmicroarrayexperiments AT volzjoachim systematicanalysisoft7rnapolymerasebasedinvitrolinearrnaamplificationforuseinmicroarrayexperiments AT kioschispetra systematicanalysisoft7rnapolymerasebasedinvitrolinearrnaamplificationforuseinmicroarrayexperiments AT hafnermathias systematicanalysisoft7rnapolymerasebasedinvitrolinearrnaamplificationforuseinmicroarrayexperiments AT poustkaannemarie systematicanalysisoft7rnapolymerasebasedinvitrolinearrnaamplificationforuseinmicroarrayexperiments AT sultmannholger systematicanalysisoft7rnapolymerasebasedinvitrolinearrnaamplificationforuseinmicroarrayexperiments |