Cargando…

Seasonal Variation of Newly Notified Pulmonary Tuberculosis Cases from 2004 to 2013 in Wuhan, China

BACKGROUND: Although there was a report about the seasonal variation in Wuhan city, it only analyzed the prevalence data of pulmonary tuberculosis (TB) cases, and just studied the seasonality by subgroup of smear positive and negative from 2006 to 2010 by spectral analysis. In this study, we investi...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xiaobing, Duan, Qionghong, Wang, Jianjie, Zhang, Zhengbin, Jiang, Gaofeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193739/
https://www.ncbi.nlm.nih.gov/pubmed/25303675
http://dx.doi.org/10.1371/journal.pone.0108369
Descripción
Sumario:BACKGROUND: Although there was a report about the seasonal variation in Wuhan city, it only analyzed the prevalence data of pulmonary tuberculosis (TB) cases, and just studied the seasonality by subgroup of smear positive and negative from 2006 to 2010 by spectral analysis. In this study, we investigated the seasonality of the total newly notified pulmonary TB cases by subgroups such as time period, sex, age, occupation, district, and sputum smear result from 2004 to 2013 in Wuhan by a popular seasonal adjustment model (TRAMO-SEATS). METHODS: Monthly pulmonary TB cases from 2004 to 2013 in Wuhan were analyzed by the TRAMO-SEATS seasonal adjustment program. Seasonal amplitude was calculated and compared within the subgroups. RESULTS: From 2004 to 2013, there were 77.76 thousand newly notified pulmonary TB cases in Wuhan, China. There was a dominant peak spring peak (March) with seasonal amplitude of 56.81% and a second summer peak (September) of 43.40%, compared with the trough month (December). The spring seasonal amplitude in 2004–2008 was higher than that of 2009–2013(P<0.05). There were no statistical differences for spring seasonal amplitude within subgroups of gender, age, district, and sputum smear result (P>0.05). However, there were significant differences in spring seasonal amplitude by occupation, with amplitude ranging from 59.37% to 113.22% (P<0.05). The summer seasonal amplitude in 2004–2008 was higher than that of 2009–2013(P<0.05). There were no statistical differences in summer seasonal amplitude within subgroups of gender, district, sputum smear result(P>0.05). There were significant differences in summer seasonal amplitude by age, with amplitude ranging from 36.05% to 100.09% (P<0.05). Also, there were significant differences in summer seasonal amplitude by occupation, with amplitude ranging from 43.40% to 109.88% (P<0.05). CONCLUSIONS: There was an apparent seasonal variation in pulmonary TB cases in Wuhan. We speculated that spring peak in our study was most likely caused by the increased reactivation of the latent TB due to vitamin D deficiency and high PM2.5 concentration, while the summer peak was mainly resulted from the enhanced winter transmission due to indoor crowding in winter, overcrowding of public transportation over the period of the Spring Festival and health care seeking delay in winter.