Cargando…
Characterization and Compensation of Network-Level Anomalies in Mixed-Signal Neuromorphic Modeling Platforms
Advancing the size and complexity of neural network models leads to an ever increasing demand for computational resources for their simulation. Neuromorphic devices offer a number of advantages over conventional computing architectures, such as high emulation speed or low power consumption, but this...
Autores principales: | Petrovici, Mihai A., Vogginger, Bernhard, Müller, Paul, Breitwieser, Oliver, Lundqvist, Mikael, Muller, Lyle, Ehrlich, Matthias, Destexhe, Alain, Lansner, Anders, Schüffny, René, Schemmel, Johannes, Meier, Karlheinz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193761/ https://www.ncbi.nlm.nih.gov/pubmed/25303102 http://dx.doi.org/10.1371/journal.pone.0108590 |
Ejemplares similares
-
Six Networks on a Universal Neuromorphic Computing Substrate
por: Pfeil, Thomas, et al.
Publicado: (2013) -
Compensating Inhomogeneities of Neuromorphic VLSI Devices Via Short-Term Synaptic Plasticity
por: Bill, Johannes, et al.
Publicado: (2010) -
Reducing the computational footprint for real-time BCPNN learning
por: Vogginger, Bernhard, et al.
Publicado: (2015) -
Establishing a Novel Modeling Tool: A Python-Based Interface for a Neuromorphic Hardware System
por: Brüderle, Daniel, et al.
Publicado: (2009) -
Verifying the biological relevance of a neuromorphic hardware device
por: Brüderle, Daniel, et al.
Publicado: (2007)