Cargando…

Epizootic Pneumonia of Bighorn Sheep following Experimental Exposure to Mycoplasma ovipneumoniae

BACKGROUND: Bronchopneumonia is a population limiting disease of bighorn sheep (Ovis canadensis). The cause of this disease has been a subject of debate. Leukotoxin expressing Mannheimia haemolytica and Bibersteinia trehalosi produce acute pneumonia after experimental challenge but are infrequently...

Descripción completa

Detalles Bibliográficos
Autores principales: Besser, Thomas E., Cassirer, E. Frances, Potter, Kathleen A., Lahmers, Kevin, Oaks, J. Lindsay, Shanthalingam, Sudarvili, Srikumaran, Subramaniam, Foreyt, William J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193846/
https://www.ncbi.nlm.nih.gov/pubmed/25302992
http://dx.doi.org/10.1371/journal.pone.0110039
Descripción
Sumario:BACKGROUND: Bronchopneumonia is a population limiting disease of bighorn sheep (Ovis canadensis). The cause of this disease has been a subject of debate. Leukotoxin expressing Mannheimia haemolytica and Bibersteinia trehalosi produce acute pneumonia after experimental challenge but are infrequently isolated from animals in natural outbreaks. Mycoplasma ovipneumoniae, epidemiologically implicated in naturally occurring outbreaks, has received little experimental evaluation as a primary agent of bighorn sheep pneumonia. METHODOLOGY/PRINCIPAL FINDINGS: In two experiments, bighorn sheep housed in multiple pens 7.6 to 12 m apart were exposed to M. ovipneumoniae by introduction of a single infected or challenged animal to a single pen. Respiratory disease was monitored by observation of clinical signs and confirmed by necropsy. Bacterial involvement in the pneumonic lungs was evaluated by conventional aerobic bacteriology and by culture-independent methods. In both experiments the challenge strain of M. ovipneumoniae was transmitted to all animals both within and between pens and all infected bighorn sheep developed bronchopneumonia. In six bighorn sheep in which the disease was allowed to run its course, three died with bronchopneumonia 34, 65, and 109 days after M. ovipneumoniae introduction. Diverse bacterial populations, predominantly including multiple obligate anaerobic species, were present in pneumonic lung tissues at necropsy. CONCLUSIONS/SIGNIFICANCE: Exposure to a single M. ovipneumoniae infected animal resulted in transmission of infection to all bighorn sheep both within the pen and in adjacent pens, and all infected sheep developed bronchopneumonia. The epidemiologic, pathologic and microbiologic findings in these experimental animals resembled those seen in naturally occurring pneumonia outbreaks in free ranging bighorn sheep.