Cargando…
Using observation-level random effects to model overdispersion in count data in ecology and evolution
Overdispersion is common in models of count data in ecology and evolutionary biology, and can occur due to missing covariates, non-independent (aggregated) data, or an excess frequency of zeroes (zero-inflation). Accounting for overdispersion in such models is vital, as failing to do so can lead to...
Autor principal: | Harrison, Xavier A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4194460/ https://www.ncbi.nlm.nih.gov/pubmed/25320683 http://dx.doi.org/10.7717/peerj.616 |
Ejemplares similares
-
A comparison of observation-level random effect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology & evolution
por: Harrison, Xavier A.
Publicado: (2015) -
Negative Binomial Regression: Understanding and Modeling Overdispersed Count Data
por: Hilbe, Joseph M
Publicado: (2011) -
A Bayesian generalized random regression model for estimating heritability using overdispersed count data
por: Mair, Colette, et al.
Publicado: (2015) -
Dirichlet negative multinomial regression for overdispersed correlated count
data
por: Farewell, Daniel M., et al.
Publicado: (2013) -
A Bayesian Approach to Account for Misclassification and Overdispersion in Count Data
por: Wu, Wenqi, et al.
Publicado: (2015)