Cargando…
Engineering Bacterial Transcription Regulation To Create a Synthetic in Vitro Two-Hybrid System for Protein Interaction Assays
[Image: see text] Transcriptional activation of σ(54)-RNA polymerase holoenzyme (σ(54)-RNAP) in bacteria is dependent on a cis-acting DNA element (bacterial enhancer), which recruits the bacterial enhancer-binding protein to contact the holoenzyme via DNA looping. Using a constructive synthetic biol...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4195380/ https://www.ncbi.nlm.nih.gov/pubmed/25188838 http://dx.doi.org/10.1021/ja502512g |
_version_ | 1782339303839367168 |
---|---|
author | Zhou, Ying Asahara, Haruichi Schneider, Nils Dranchak, Patricia Inglese, James Chong, Shaorong |
author_facet | Zhou, Ying Asahara, Haruichi Schneider, Nils Dranchak, Patricia Inglese, James Chong, Shaorong |
author_sort | Zhou, Ying |
collection | PubMed |
description | [Image: see text] Transcriptional activation of σ(54)-RNA polymerase holoenzyme (σ(54)-RNAP) in bacteria is dependent on a cis-acting DNA element (bacterial enhancer), which recruits the bacterial enhancer-binding protein to contact the holoenzyme via DNA looping. Using a constructive synthetic biology approach, we recapitulated such process of transcriptional activation by recruitment in a reconstituted cell-free system, assembled entirely from a defined number of purified components. We further engineered the bacterial enhancer-binding protein PspF to create an in vitro two-hybrid system (IVT2H), capable of carrying out gene regulation in response to expressed protein interactions. Compared with genetic systems and other in vitro methods, IVT2H not only allows detection of different types of protein interactions in just a few hours without involving cells but also provides a general correlation of the relative binding strength of the protein interaction with the IVT2H signal. Due to its reconstituted nature, IVT2H provides a biochemical assay platform with a clean and defined background. We demonstrated the proof-of-concept of using IVT2H as an alternative assay for high throughput screening of small-molecule inhibitors of protein–protein interaction. |
format | Online Article Text |
id | pubmed-4195380 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-41953802015-09-04 Engineering Bacterial Transcription Regulation To Create a Synthetic in Vitro Two-Hybrid System for Protein Interaction Assays Zhou, Ying Asahara, Haruichi Schneider, Nils Dranchak, Patricia Inglese, James Chong, Shaorong J Am Chem Soc [Image: see text] Transcriptional activation of σ(54)-RNA polymerase holoenzyme (σ(54)-RNAP) in bacteria is dependent on a cis-acting DNA element (bacterial enhancer), which recruits the bacterial enhancer-binding protein to contact the holoenzyme via DNA looping. Using a constructive synthetic biology approach, we recapitulated such process of transcriptional activation by recruitment in a reconstituted cell-free system, assembled entirely from a defined number of purified components. We further engineered the bacterial enhancer-binding protein PspF to create an in vitro two-hybrid system (IVT2H), capable of carrying out gene regulation in response to expressed protein interactions. Compared with genetic systems and other in vitro methods, IVT2H not only allows detection of different types of protein interactions in just a few hours without involving cells but also provides a general correlation of the relative binding strength of the protein interaction with the IVT2H signal. Due to its reconstituted nature, IVT2H provides a biochemical assay platform with a clean and defined background. We demonstrated the proof-of-concept of using IVT2H as an alternative assay for high throughput screening of small-molecule inhibitors of protein–protein interaction. American Chemical Society 2014-09-04 2014-10-08 /pmc/articles/PMC4195380/ /pubmed/25188838 http://dx.doi.org/10.1021/ja502512g Text en Copyright © 2014 American Chemical Society Terms of Use (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) |
spellingShingle | Zhou, Ying Asahara, Haruichi Schneider, Nils Dranchak, Patricia Inglese, James Chong, Shaorong Engineering Bacterial Transcription Regulation To Create a Synthetic in Vitro Two-Hybrid System for Protein Interaction Assays |
title | Engineering
Bacterial Transcription Regulation To
Create a Synthetic in Vitro Two-Hybrid System for
Protein Interaction Assays |
title_full | Engineering
Bacterial Transcription Regulation To
Create a Synthetic in Vitro Two-Hybrid System for
Protein Interaction Assays |
title_fullStr | Engineering
Bacterial Transcription Regulation To
Create a Synthetic in Vitro Two-Hybrid System for
Protein Interaction Assays |
title_full_unstemmed | Engineering
Bacterial Transcription Regulation To
Create a Synthetic in Vitro Two-Hybrid System for
Protein Interaction Assays |
title_short | Engineering
Bacterial Transcription Regulation To
Create a Synthetic in Vitro Two-Hybrid System for
Protein Interaction Assays |
title_sort | engineering
bacterial transcription regulation to
create a synthetic in vitro two-hybrid system for
protein interaction assays |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4195380/ https://www.ncbi.nlm.nih.gov/pubmed/25188838 http://dx.doi.org/10.1021/ja502512g |
work_keys_str_mv | AT zhouying engineeringbacterialtranscriptionregulationtocreateasyntheticinvitrotwohybridsystemforproteininteractionassays AT asaharaharuichi engineeringbacterialtranscriptionregulationtocreateasyntheticinvitrotwohybridsystemforproteininteractionassays AT schneidernils engineeringbacterialtranscriptionregulationtocreateasyntheticinvitrotwohybridsystemforproteininteractionassays AT dranchakpatricia engineeringbacterialtranscriptionregulationtocreateasyntheticinvitrotwohybridsystemforproteininteractionassays AT inglesejames engineeringbacterialtranscriptionregulationtocreateasyntheticinvitrotwohybridsystemforproteininteractionassays AT chongshaorong engineeringbacterialtranscriptionregulationtocreateasyntheticinvitrotwohybridsystemforproteininteractionassays |