Cargando…
Regularized group regression methods for genomic prediction: Bridge, MCP, SCAD, group bridge, group lasso, sparse group lasso, group MCP and group SCAD
BACKGROUND: Genomic prediction is now widely recognized as an efficient, cost-effective and theoretically well-founded method for estimating breeding values using molecular markers spread over the whole genome. The prediction problem entails estimating the effects of all genes or chromosomal segment...
Autores principales: | Ogutu, Joseph O, Piepho, Hans-Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4195413/ https://www.ncbi.nlm.nih.gov/pubmed/25519521 http://dx.doi.org/10.1186/1753-6561-8-S5-S7 |
Ejemplares similares
-
Seagull: lasso, group lasso and sparse-group lasso regularization for linear regression models via proximal gradient descent
por: Klosa, Jan, et al.
Publicado: (2020) -
Sparse Damage Detection with Complex Group Lasso and Adaptive Complex Group Lasso
por: Dimopoulos, Vasileios, et al.
Publicado: (2022) -
Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions
por: Ogutu, Joseph O, et al.
Publicado: (2012) -
Groupyr: Sparse Group Lasso in Python
por: Richie-Halford, Adam, et al.
Publicado: (2021) -
Group Guided Fused Laplacian Sparse Group Lasso for Modeling Alzheimer's Disease Progression
por: Liu, Xiaoli, et al.
Publicado: (2020)