Cargando…

Sample Size Determination for Individual Bioequivalence Inference

Statistical criterion for evaluation of individual bioequivalence (IBE) between generic and innovative products often involves a function of the second moments of normal distributions. Under replicated crossover designs, the aggregate criterion for IBE proposed by the guidance of the U.S. Food and D...

Descripción completa

Detalles Bibliográficos
Autores principales: Chiang, Chieh, Hsiao, Chin-Fu, Liu, Jen-Pei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4195669/
https://www.ncbi.nlm.nih.gov/pubmed/25310592
http://dx.doi.org/10.1371/journal.pone.0109746
Descripción
Sumario:Statistical criterion for evaluation of individual bioequivalence (IBE) between generic and innovative products often involves a function of the second moments of normal distributions. Under replicated crossover designs, the aggregate criterion for IBE proposed by the guidance of the U.S. Food and Drug Administration (FDA) contains the squared mean difference, variance of subject-by-formulation interaction, and the difference in within-subject variances between the generic and innovative products. The upper confidence bound for the linearized form of the criterion derived by the modified large sample (MLS) method is proposed in the 2001 U.S. FDA guidance as a testing procedure for evaluation of IBE. Due to the complexity of the power function for the criterion based on the second moments, literature on sample size determination for the inference of IBE is scarce. Under the two-sequence and four-period crossover design, we derive the asymptotic distribution of the upper confidence bound of the linearized criterion. Hence the asymptotic power can be derived for sample size determination for evaluation of IBE. Results of numerical studies are reported. Discussion of sample size determination for evaluation of IBE based on the aggregate criterion of the second moments in practical applications is provided.