Cargando…

Cytoskeletal Dependence of Insulin Granule Movement Dynamics in INS-1 Beta-Cells in Response to Glucose

For pancreatic β-cells to secrete insulin in response to elevated blood glucose, insulin granules retained within the subplasmalemmal space must be transported to sites of secretion on the plasma membrane. Using a combination of super-resolution STORM imaging and live cell TIRF microscopy we investi...

Descripción completa

Detalles Bibliográficos
Autores principales: Heaslip, Aoife T., Nelson, Shane R., Lombardo, Andrew T., Beck Previs, Samantha, Armstrong, Jessica, Warshaw, David M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4195697/
https://www.ncbi.nlm.nih.gov/pubmed/25310693
http://dx.doi.org/10.1371/journal.pone.0109082
_version_ 1782339348520239104
author Heaslip, Aoife T.
Nelson, Shane R.
Lombardo, Andrew T.
Beck Previs, Samantha
Armstrong, Jessica
Warshaw, David M.
author_facet Heaslip, Aoife T.
Nelson, Shane R.
Lombardo, Andrew T.
Beck Previs, Samantha
Armstrong, Jessica
Warshaw, David M.
author_sort Heaslip, Aoife T.
collection PubMed
description For pancreatic β-cells to secrete insulin in response to elevated blood glucose, insulin granules retained within the subplasmalemmal space must be transported to sites of secretion on the plasma membrane. Using a combination of super-resolution STORM imaging and live cell TIRF microscopy we investigate how the organization and dynamics of the actin and microtubule cytoskeletons in INS-1 β-cells contribute to this process. GFP-labeled insulin granules display 3 different modes of motion (stationary, diffusive-like, and directed). Diffusive-like motion dominates in basal, low glucose conditions. Upon glucose stimulation no gross rearrangement of the actin cytoskeleton is observed but there are increases in the 1) rate of microtubule polymerization; 2) rate of diffusive-like motion; and 3) proportion of granules undergoing microtubule-based directed motion. By pharmacologically perturbing the actin and microtubule cytoskeletons, we determine that microtubule-dependent granule transport occurs within the subplasmalemmal space and that the actin cytoskeleton limits this transport in basal conditions, when insulin secretion needs to be inhibited.
format Online
Article
Text
id pubmed-4195697
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-41956972014-10-15 Cytoskeletal Dependence of Insulin Granule Movement Dynamics in INS-1 Beta-Cells in Response to Glucose Heaslip, Aoife T. Nelson, Shane R. Lombardo, Andrew T. Beck Previs, Samantha Armstrong, Jessica Warshaw, David M. PLoS One Research Article For pancreatic β-cells to secrete insulin in response to elevated blood glucose, insulin granules retained within the subplasmalemmal space must be transported to sites of secretion on the plasma membrane. Using a combination of super-resolution STORM imaging and live cell TIRF microscopy we investigate how the organization and dynamics of the actin and microtubule cytoskeletons in INS-1 β-cells contribute to this process. GFP-labeled insulin granules display 3 different modes of motion (stationary, diffusive-like, and directed). Diffusive-like motion dominates in basal, low glucose conditions. Upon glucose stimulation no gross rearrangement of the actin cytoskeleton is observed but there are increases in the 1) rate of microtubule polymerization; 2) rate of diffusive-like motion; and 3) proportion of granules undergoing microtubule-based directed motion. By pharmacologically perturbing the actin and microtubule cytoskeletons, we determine that microtubule-dependent granule transport occurs within the subplasmalemmal space and that the actin cytoskeleton limits this transport in basal conditions, when insulin secretion needs to be inhibited. Public Library of Science 2014-10-13 /pmc/articles/PMC4195697/ /pubmed/25310693 http://dx.doi.org/10.1371/journal.pone.0109082 Text en © 2014 Heaslip et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Heaslip, Aoife T.
Nelson, Shane R.
Lombardo, Andrew T.
Beck Previs, Samantha
Armstrong, Jessica
Warshaw, David M.
Cytoskeletal Dependence of Insulin Granule Movement Dynamics in INS-1 Beta-Cells in Response to Glucose
title Cytoskeletal Dependence of Insulin Granule Movement Dynamics in INS-1 Beta-Cells in Response to Glucose
title_full Cytoskeletal Dependence of Insulin Granule Movement Dynamics in INS-1 Beta-Cells in Response to Glucose
title_fullStr Cytoskeletal Dependence of Insulin Granule Movement Dynamics in INS-1 Beta-Cells in Response to Glucose
title_full_unstemmed Cytoskeletal Dependence of Insulin Granule Movement Dynamics in INS-1 Beta-Cells in Response to Glucose
title_short Cytoskeletal Dependence of Insulin Granule Movement Dynamics in INS-1 Beta-Cells in Response to Glucose
title_sort cytoskeletal dependence of insulin granule movement dynamics in ins-1 beta-cells in response to glucose
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4195697/
https://www.ncbi.nlm.nih.gov/pubmed/25310693
http://dx.doi.org/10.1371/journal.pone.0109082
work_keys_str_mv AT heaslipaoifet cytoskeletaldependenceofinsulingranulemovementdynamicsinins1betacellsinresponsetoglucose
AT nelsonshaner cytoskeletaldependenceofinsulingranulemovementdynamicsinins1betacellsinresponsetoglucose
AT lombardoandrewt cytoskeletaldependenceofinsulingranulemovementdynamicsinins1betacellsinresponsetoglucose
AT beckprevissamantha cytoskeletaldependenceofinsulingranulemovementdynamicsinins1betacellsinresponsetoglucose
AT armstrongjessica cytoskeletaldependenceofinsulingranulemovementdynamicsinins1betacellsinresponsetoglucose
AT warshawdavidm cytoskeletaldependenceofinsulingranulemovementdynamicsinins1betacellsinresponsetoglucose