Cargando…
The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation
AIMS: It is a dogma of cardiovascular pathophysiology that the increased cardiac mass in response to increased workload is produced by the hypertrophy of the pre-existing myocytes. The role, if any, of adult-resident endogenous cardiac stem/progenitor cells (eCSCs) and new cardiomyocyte formation in...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196078/ https://www.ncbi.nlm.nih.gov/pubmed/23100284 http://dx.doi.org/10.1093/eurheartj/ehs338 |
_version_ | 1782339417344573440 |
---|---|
author | Waring, Cheryl D. Vicinanza, Carla Papalamprou, Angela Smith, Andrew J. Purushothaman, Saranya Goldspink, David F. Nadal-Ginard, Bernardo Torella, Daniele Ellison, Georgina M. |
author_facet | Waring, Cheryl D. Vicinanza, Carla Papalamprou, Angela Smith, Andrew J. Purushothaman, Saranya Goldspink, David F. Nadal-Ginard, Bernardo Torella, Daniele Ellison, Georgina M. |
author_sort | Waring, Cheryl D. |
collection | PubMed |
description | AIMS: It is a dogma of cardiovascular pathophysiology that the increased cardiac mass in response to increased workload is produced by the hypertrophy of the pre-existing myocytes. The role, if any, of adult-resident endogenous cardiac stem/progenitor cells (eCSCs) and new cardiomyocyte formation in physiological cardiac remodelling remains unexplored. METHODS AND RESULTS: In response to regular, intensity-controlled exercise training, adult rats respond with hypertrophy of the pre-existing myocytes. In addition, a significant number (∼7%) of smaller newly formed BrdU-positive cardiomyocytes are produced by the exercised animals. Capillary density significantly increased in exercised animals, balancing cardiomyogenesis with neo-angiogenesis. c-kit(pos) eCSCs increased their number and activated state in exercising vs. sedentary animals. c-kit(pos) eCSCs in exercised hearts showed an increased expression of transcription factors, indicative of their commitment to either the cardiomyocyte (Nkx2.5(pos)) or capillary (Ets-1(pos)) lineages. These adaptations were dependent on exercise duration and intensity. Insulin-like growth factor-1, transforming growth factor-β1, neuregulin-1, bone morphogenetic protein-10, and periostin were significantly up-regulated in cardiomyocytes of exercised vs. sedentary animals. These factors differentially stimulated c-kit(pos) eCSC proliferation and commitment in vitro, pointing to a similar role in vivo. CONCLUSION: Intensity-controlled exercise training initiates myocardial remodelling through increased cardiomyocyte growth factor expression leading to cardiomyocyte hypertrophy and to activation and ensuing differentiation of c-kit(pos) eCSCs. This leads to the generation of new myocardial cells. These findings highlight the endogenous regenerative capacity of the adult heart, represented by the eCSCs, and the fact that the physiological cardiac adaptation to exercise stress is a combination of cardiomyocyte hypertrophy and hyperplasia (cardiomyocytes and capillaries). |
format | Online Article Text |
id | pubmed-4196078 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-41960782014-10-16 The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation Waring, Cheryl D. Vicinanza, Carla Papalamprou, Angela Smith, Andrew J. Purushothaman, Saranya Goldspink, David F. Nadal-Ginard, Bernardo Torella, Daniele Ellison, Georgina M. Eur Heart J Basic Science AIMS: It is a dogma of cardiovascular pathophysiology that the increased cardiac mass in response to increased workload is produced by the hypertrophy of the pre-existing myocytes. The role, if any, of adult-resident endogenous cardiac stem/progenitor cells (eCSCs) and new cardiomyocyte formation in physiological cardiac remodelling remains unexplored. METHODS AND RESULTS: In response to regular, intensity-controlled exercise training, adult rats respond with hypertrophy of the pre-existing myocytes. In addition, a significant number (∼7%) of smaller newly formed BrdU-positive cardiomyocytes are produced by the exercised animals. Capillary density significantly increased in exercised animals, balancing cardiomyogenesis with neo-angiogenesis. c-kit(pos) eCSCs increased their number and activated state in exercising vs. sedentary animals. c-kit(pos) eCSCs in exercised hearts showed an increased expression of transcription factors, indicative of their commitment to either the cardiomyocyte (Nkx2.5(pos)) or capillary (Ets-1(pos)) lineages. These adaptations were dependent on exercise duration and intensity. Insulin-like growth factor-1, transforming growth factor-β1, neuregulin-1, bone morphogenetic protein-10, and periostin were significantly up-regulated in cardiomyocytes of exercised vs. sedentary animals. These factors differentially stimulated c-kit(pos) eCSC proliferation and commitment in vitro, pointing to a similar role in vivo. CONCLUSION: Intensity-controlled exercise training initiates myocardial remodelling through increased cardiomyocyte growth factor expression leading to cardiomyocyte hypertrophy and to activation and ensuing differentiation of c-kit(pos) eCSCs. This leads to the generation of new myocardial cells. These findings highlight the endogenous regenerative capacity of the adult heart, represented by the eCSCs, and the fact that the physiological cardiac adaptation to exercise stress is a combination of cardiomyocyte hypertrophy and hyperplasia (cardiomyocytes and capillaries). Oxford University Press 2014-10-14 2012-10-25 /pmc/articles/PMC4196078/ /pubmed/23100284 http://dx.doi.org/10.1093/eurheartj/ehs338 Text en © The Author 2012. Published by Oxford University Press on behalf of European Society of Cardiology. http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided that the original authorship is properly and fully attributed; the Journal, Learned Society and Oxford University Press are attributed as the original place of publication with correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oup.com. |
spellingShingle | Basic Science Waring, Cheryl D. Vicinanza, Carla Papalamprou, Angela Smith, Andrew J. Purushothaman, Saranya Goldspink, David F. Nadal-Ginard, Bernardo Torella, Daniele Ellison, Georgina M. The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation |
title | The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation |
title_full | The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation |
title_fullStr | The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation |
title_full_unstemmed | The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation |
title_short | The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation |
title_sort | adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation |
topic | Basic Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196078/ https://www.ncbi.nlm.nih.gov/pubmed/23100284 http://dx.doi.org/10.1093/eurheartj/ehs338 |
work_keys_str_mv | AT waringcheryld theadultheartrespondstoincreasedworkloadwithphysiologichypertrophycardiacstemcellactivationandnewmyocyteformation AT vicinanzacarla theadultheartrespondstoincreasedworkloadwithphysiologichypertrophycardiacstemcellactivationandnewmyocyteformation AT papalamprouangela theadultheartrespondstoincreasedworkloadwithphysiologichypertrophycardiacstemcellactivationandnewmyocyteformation AT smithandrewj theadultheartrespondstoincreasedworkloadwithphysiologichypertrophycardiacstemcellactivationandnewmyocyteformation AT purushothamansaranya theadultheartrespondstoincreasedworkloadwithphysiologichypertrophycardiacstemcellactivationandnewmyocyteformation AT goldspinkdavidf theadultheartrespondstoincreasedworkloadwithphysiologichypertrophycardiacstemcellactivationandnewmyocyteformation AT nadalginardbernardo theadultheartrespondstoincreasedworkloadwithphysiologichypertrophycardiacstemcellactivationandnewmyocyteformation AT torelladaniele theadultheartrespondstoincreasedworkloadwithphysiologichypertrophycardiacstemcellactivationandnewmyocyteformation AT ellisongeorginam theadultheartrespondstoincreasedworkloadwithphysiologichypertrophycardiacstemcellactivationandnewmyocyteformation AT waringcheryld adultheartrespondstoincreasedworkloadwithphysiologichypertrophycardiacstemcellactivationandnewmyocyteformation AT vicinanzacarla adultheartrespondstoincreasedworkloadwithphysiologichypertrophycardiacstemcellactivationandnewmyocyteformation AT papalamprouangela adultheartrespondstoincreasedworkloadwithphysiologichypertrophycardiacstemcellactivationandnewmyocyteformation AT smithandrewj adultheartrespondstoincreasedworkloadwithphysiologichypertrophycardiacstemcellactivationandnewmyocyteformation AT purushothamansaranya adultheartrespondstoincreasedworkloadwithphysiologichypertrophycardiacstemcellactivationandnewmyocyteformation AT goldspinkdavidf adultheartrespondstoincreasedworkloadwithphysiologichypertrophycardiacstemcellactivationandnewmyocyteformation AT nadalginardbernardo adultheartrespondstoincreasedworkloadwithphysiologichypertrophycardiacstemcellactivationandnewmyocyteformation AT torelladaniele adultheartrespondstoincreasedworkloadwithphysiologichypertrophycardiacstemcellactivationandnewmyocyteformation AT ellisongeorginam adultheartrespondstoincreasedworkloadwithphysiologichypertrophycardiacstemcellactivationandnewmyocyteformation |