Cargando…

Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites

The magnetic anisotropy is decreased with increasing temperature in normal magnetic materials, which is harmful to the thermal stability of magnetic devices. Here, we report the realization of positive temperature coefficient of magnetic anisotropy in a novel composite combining β-phase polyvinylide...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yiwei, Wang, Baomin, Zhan, Qingfeng, Tang, Zhenhua, Yang, Huali, Liu, Gang, Zuo, Zhenghu, Zhang, Xiaoshan, Xie, Yali, Zhu, Xiaojian, Chen, Bin, Wang, Junling, Li, Run-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196102/
https://www.ncbi.nlm.nih.gov/pubmed/25311047
http://dx.doi.org/10.1038/srep06615
_version_ 1782339423001640960
author Liu, Yiwei
Wang, Baomin
Zhan, Qingfeng
Tang, Zhenhua
Yang, Huali
Liu, Gang
Zuo, Zhenghu
Zhang, Xiaoshan
Xie, Yali
Zhu, Xiaojian
Chen, Bin
Wang, Junling
Li, Run-Wei
author_facet Liu, Yiwei
Wang, Baomin
Zhan, Qingfeng
Tang, Zhenhua
Yang, Huali
Liu, Gang
Zuo, Zhenghu
Zhang, Xiaoshan
Xie, Yali
Zhu, Xiaojian
Chen, Bin
Wang, Junling
Li, Run-Wei
author_sort Liu, Yiwei
collection PubMed
description The magnetic anisotropy is decreased with increasing temperature in normal magnetic materials, which is harmful to the thermal stability of magnetic devices. Here, we report the realization of positive temperature coefficient of magnetic anisotropy in a novel composite combining β-phase polyvinylidene fluoride (PVDF) with magnetostrictive materials (magnetostrictive film/PVDF bilayer structure). We ascribe the enhanced magnetic anisotropy of the magnetic film at elevated temperature to the strain-induced anisotropy resulting from the anisotropic thermal expansion of the β-phase PVDF. The simulation based on modified Stoner-Wohlfarth model and the ferromagnetic resonance measurements confirms our results. The positive temperature coefficient of magnetic anisotropy is estimated to be 1.1 × 10(2) J m(−3) K(−1). Preparing the composite at low temperature can enlarge the temperature range where it shows the positive temperature coefficient of magnetic anisotropy. The present results may help to design magnetic devices with improved thermal stability and enhanced performance.
format Online
Article
Text
id pubmed-4196102
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-41961022014-10-21 Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites Liu, Yiwei Wang, Baomin Zhan, Qingfeng Tang, Zhenhua Yang, Huali Liu, Gang Zuo, Zhenghu Zhang, Xiaoshan Xie, Yali Zhu, Xiaojian Chen, Bin Wang, Junling Li, Run-Wei Sci Rep Article The magnetic anisotropy is decreased with increasing temperature in normal magnetic materials, which is harmful to the thermal stability of magnetic devices. Here, we report the realization of positive temperature coefficient of magnetic anisotropy in a novel composite combining β-phase polyvinylidene fluoride (PVDF) with magnetostrictive materials (magnetostrictive film/PVDF bilayer structure). We ascribe the enhanced magnetic anisotropy of the magnetic film at elevated temperature to the strain-induced anisotropy resulting from the anisotropic thermal expansion of the β-phase PVDF. The simulation based on modified Stoner-Wohlfarth model and the ferromagnetic resonance measurements confirms our results. The positive temperature coefficient of magnetic anisotropy is estimated to be 1.1 × 10(2) J m(−3) K(−1). Preparing the composite at low temperature can enlarge the temperature range where it shows the positive temperature coefficient of magnetic anisotropy. The present results may help to design magnetic devices with improved thermal stability and enhanced performance. Nature Publishing Group 2014-10-14 /pmc/articles/PMC4196102/ /pubmed/25311047 http://dx.doi.org/10.1038/srep06615 Text en Copyright © 2014, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-sa/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/
spellingShingle Article
Liu, Yiwei
Wang, Baomin
Zhan, Qingfeng
Tang, Zhenhua
Yang, Huali
Liu, Gang
Zuo, Zhenghu
Zhang, Xiaoshan
Xie, Yali
Zhu, Xiaojian
Chen, Bin
Wang, Junling
Li, Run-Wei
Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites
title Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites
title_full Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites
title_fullStr Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites
title_full_unstemmed Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites
title_short Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites
title_sort positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (pvdf)-based magnetic composites
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196102/
https://www.ncbi.nlm.nih.gov/pubmed/25311047
http://dx.doi.org/10.1038/srep06615
work_keys_str_mv AT liuyiwei positivetemperaturecoefficientofmagneticanisotropyinpolyvinylidenefluoridepvdfbasedmagneticcomposites
AT wangbaomin positivetemperaturecoefficientofmagneticanisotropyinpolyvinylidenefluoridepvdfbasedmagneticcomposites
AT zhanqingfeng positivetemperaturecoefficientofmagneticanisotropyinpolyvinylidenefluoridepvdfbasedmagneticcomposites
AT tangzhenhua positivetemperaturecoefficientofmagneticanisotropyinpolyvinylidenefluoridepvdfbasedmagneticcomposites
AT yanghuali positivetemperaturecoefficientofmagneticanisotropyinpolyvinylidenefluoridepvdfbasedmagneticcomposites
AT liugang positivetemperaturecoefficientofmagneticanisotropyinpolyvinylidenefluoridepvdfbasedmagneticcomposites
AT zuozhenghu positivetemperaturecoefficientofmagneticanisotropyinpolyvinylidenefluoridepvdfbasedmagneticcomposites
AT zhangxiaoshan positivetemperaturecoefficientofmagneticanisotropyinpolyvinylidenefluoridepvdfbasedmagneticcomposites
AT xieyali positivetemperaturecoefficientofmagneticanisotropyinpolyvinylidenefluoridepvdfbasedmagneticcomposites
AT zhuxiaojian positivetemperaturecoefficientofmagneticanisotropyinpolyvinylidenefluoridepvdfbasedmagneticcomposites
AT chenbin positivetemperaturecoefficientofmagneticanisotropyinpolyvinylidenefluoridepvdfbasedmagneticcomposites
AT wangjunling positivetemperaturecoefficientofmagneticanisotropyinpolyvinylidenefluoridepvdfbasedmagneticcomposites
AT lirunwei positivetemperaturecoefficientofmagneticanisotropyinpolyvinylidenefluoridepvdfbasedmagneticcomposites