Cargando…
Cancer progression modeling using static sample data
As molecular profiling data continue to accumulate, the design of integrative computational analyses that can provide insights into the dynamic aspects of cancer progression becomes feasible. Here, we present a novel computational method for the construction of cancer progression models based on the...
Autores principales: | Sun, Yijun, Yao, Jin, Nowak, Norma J, Goodison, Steve |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196119/ https://www.ncbi.nlm.nih.gov/pubmed/25155694 http://dx.doi.org/10.1186/s13059-014-0440-0 |
Ejemplares similares
-
Computational approach for deriving cancer progression roadmaps from static sample data
por: Sun, Yijun, et al.
Publicado: (2017) -
Advanced computational algorithms for microbial community analysis using massive 16S rRNA sequence data
por: Sun, Yijun, et al.
Publicado: (2010) -
Computational disease progression modeling can provide insights into cancer evolution
por: Goodison, Steve, et al.
Publicado: (2020) -
An Open-source Static Threshold Perimetry Test Using Remote Eye-tracking (Eyecatcher): Description, Validation, and Preliminary Normative Data
por: Jones, Pete R.
Publicado: (2020) -
A unified approach for characterizing static/dynamic connectivity frequency profiles using filter banks
por: Faghiri, Ashkan, et al.
Publicado: (2021)