Cargando…
Meristem identity and phyllotaxis in inflorescence development
Inflorescence morphology is incredibly diverse. This diversity of form has been a fruitful source of inquiry for plant morphologists for more than a century. Work in the grasses (Poaceae), the tomato family (Solanaceae), and Arabidopsis thaliana (Brassicaceae) has led to a richer understanding of th...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196479/ https://www.ncbi.nlm.nih.gov/pubmed/25352850 http://dx.doi.org/10.3389/fpls.2014.00508 |
_version_ | 1782339483892449280 |
---|---|
author | Bartlett, Madelaine E. Thompson, Beth |
author_facet | Bartlett, Madelaine E. Thompson, Beth |
author_sort | Bartlett, Madelaine E. |
collection | PubMed |
description | Inflorescence morphology is incredibly diverse. This diversity of form has been a fruitful source of inquiry for plant morphologists for more than a century. Work in the grasses (Poaceae), the tomato family (Solanaceae), and Arabidopsis thaliana (Brassicaceae) has led to a richer understanding of the molecular genetics underlying this diversity. The character of individual meristems, a combination of the number (determinacy) and nature (identity) of the products a meristem produces, is key in the development of plant form. A framework that describes inflorescence development in terms of shifting meristem identities has emerged and garnered empirical support in a number of model systems. We discuss this framework and highlight one important aspect of meristem identity that is often considered in isolation, phyllotaxis. Phyllotaxis refers to the arrangement of lateral organs around a central axis. The development and evolution of phyllotaxis in the inflorescence remains underexplored, but recent work analyzing early inflorescence development in the grasses identified an evolutionary shift in primary branch phyllotaxis in the Pooideae. We discuss the evidence for an intimate connection between meristem identity and phyllotaxis in both the inflorescence and vegetative shoot, and touch on what is known about the establishment of phyllotactic patterns in the meristem. Localized auxin maxima are instrumental in determining the position of lateral primordia. Upstream factors that regulate the position of these maxima remain unclear, and how phyllotactic patterns change over the course of a plant's lifetime and evolutionary time, is largely unknown. A more complete understanding of the molecular underpinnings of phyllotaxis and architectural diversity in inflorescences will require capitalizing on the extensive resources available in existing genetic systems, and developing new model systems that more fully represent the diversity of plant morphology. |
format | Online Article Text |
id | pubmed-4196479 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-41964792014-10-28 Meristem identity and phyllotaxis in inflorescence development Bartlett, Madelaine E. Thompson, Beth Front Plant Sci Plant Science Inflorescence morphology is incredibly diverse. This diversity of form has been a fruitful source of inquiry for plant morphologists for more than a century. Work in the grasses (Poaceae), the tomato family (Solanaceae), and Arabidopsis thaliana (Brassicaceae) has led to a richer understanding of the molecular genetics underlying this diversity. The character of individual meristems, a combination of the number (determinacy) and nature (identity) of the products a meristem produces, is key in the development of plant form. A framework that describes inflorescence development in terms of shifting meristem identities has emerged and garnered empirical support in a number of model systems. We discuss this framework and highlight one important aspect of meristem identity that is often considered in isolation, phyllotaxis. Phyllotaxis refers to the arrangement of lateral organs around a central axis. The development and evolution of phyllotaxis in the inflorescence remains underexplored, but recent work analyzing early inflorescence development in the grasses identified an evolutionary shift in primary branch phyllotaxis in the Pooideae. We discuss the evidence for an intimate connection between meristem identity and phyllotaxis in both the inflorescence and vegetative shoot, and touch on what is known about the establishment of phyllotactic patterns in the meristem. Localized auxin maxima are instrumental in determining the position of lateral primordia. Upstream factors that regulate the position of these maxima remain unclear, and how phyllotactic patterns change over the course of a plant's lifetime and evolutionary time, is largely unknown. A more complete understanding of the molecular underpinnings of phyllotaxis and architectural diversity in inflorescences will require capitalizing on the extensive resources available in existing genetic systems, and developing new model systems that more fully represent the diversity of plant morphology. Frontiers Media S.A. 2014-10-14 /pmc/articles/PMC4196479/ /pubmed/25352850 http://dx.doi.org/10.3389/fpls.2014.00508 Text en Copyright © 2014 Bartlett and Thompson. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Bartlett, Madelaine E. Thompson, Beth Meristem identity and phyllotaxis in inflorescence development |
title | Meristem identity and phyllotaxis in inflorescence development |
title_full | Meristem identity and phyllotaxis in inflorescence development |
title_fullStr | Meristem identity and phyllotaxis in inflorescence development |
title_full_unstemmed | Meristem identity and phyllotaxis in inflorescence development |
title_short | Meristem identity and phyllotaxis in inflorescence development |
title_sort | meristem identity and phyllotaxis in inflorescence development |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196479/ https://www.ncbi.nlm.nih.gov/pubmed/25352850 http://dx.doi.org/10.3389/fpls.2014.00508 |
work_keys_str_mv | AT bartlettmadelainee meristemidentityandphyllotaxisininflorescencedevelopment AT thompsonbeth meristemidentityandphyllotaxisininflorescencedevelopment |