Cargando…

Human Equilibrative Nucleoside Transporter-1 Knockdown Tunes Cellular Mechanics through Epithelial-Mesenchymal Transition in Pancreatic Cancer Cells

We report cell mechanical changes in response to alteration of expression of the human equilibrative nucleoside transporter-1 (hENT1), a most abundant and widely distributed plasma membrane nucleoside transporter in human cells and/or tissues. Modulation of hENT1 expression level altered the stiffne...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Yeonju, Koay, Eugene J., Zhang, Weijia, Qin, Lidong, Kirui, Dickson K., Hussain, Fazle, Shen, Haifa, Ferrari, Mauro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196761/
https://www.ncbi.nlm.nih.gov/pubmed/25314577
http://dx.doi.org/10.1371/journal.pone.0107973
Descripción
Sumario:We report cell mechanical changes in response to alteration of expression of the human equilibrative nucleoside transporter-1 (hENT1), a most abundant and widely distributed plasma membrane nucleoside transporter in human cells and/or tissues. Modulation of hENT1 expression level altered the stiffness of pancreatic cancer Capan-1 and Panc 03.27 cells, which was analyzed by atomic force microscopy (AFM) and correlated to microfluidic platform. The hENT1 knockdown induced reduction of cellular stiffness in both of cells up to 70%. In addition, cellular phenotypic changes such as cell morphology, migration, and expression level of epithelial-mesenchymal transition (EMT) markers were observed after hENT1 knockdown. Cells with suppressed hENT1 became elongated, migrated faster, and had reduced E-cadherin and elevated N-cadherin compared to parental cells which are consistent with epithelial-mesenchymal transition (EMT). Those cellular phenotypic changes closely correlated with changes in cellular stiffness. This study suggests that hENT1 expression level affects cellular phenotype and cell elastic behavior can be a physical biomarker for quantify hENT1 expression and detect phenotypic shift. Furthermore, cell mechanics can be a critical tool in detecting disease progression and response to therapy.