Cargando…

ERRγ Is Not Required for Skeletal Development but Is a RUNX2-Dependent Negative Regulator of Postnatal Bone Formation in Male Mice

To assess the effects of the orphan nuclear Estrogen receptor-related receptor gamma (ERRγ) deficiency on skeletal development and bone turnover, we utilized an ERRγ global knockout mouse line. While we observed no gross morphological anomalies or difference in skeletal length in newborn mice, by 8...

Descripción completa

Detalles Bibliográficos
Autores principales: Cardelli, Marco, Aubin, Jane E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196935/
https://www.ncbi.nlm.nih.gov/pubmed/25313644
http://dx.doi.org/10.1371/journal.pone.0109592
_version_ 1782339550896455680
author Cardelli, Marco
Aubin, Jane E.
author_facet Cardelli, Marco
Aubin, Jane E.
author_sort Cardelli, Marco
collection PubMed
description To assess the effects of the orphan nuclear Estrogen receptor-related receptor gamma (ERRγ) deficiency on skeletal development and bone turnover, we utilized an ERRγ global knockout mouse line. While we observed no gross morphological anomalies or difference in skeletal length in newborn mice, by 8 weeks of age ERRγ +/− males but not females exhibited increased trabecular bone, which was further increased by 14 weeks. The increase in trabecular bone was due to an increase in active osteoblasts on the bone surface, without detectable alterations in osteoclast number or activity. Consistent with the histomorphometric results, we observed an increase in gene expression of the bone formation markers alkaline phosphatase (Alp) and bone sialoprotein (Bsp) in bone and increase in serum ALP, but no change in the osteoclast regulators receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) or the resorption marker carboxy-terminal collagen crosslinks (CTX). More colony forming units-alkaline phosphatase and -osteoblast (CFU-ALP, CFU-O respectively) but not CFU-fibroblast (CFU-F) formed in ERRγ +/− versus ERRγ +/+ stromal cell cultures, suggesting that ERRγ negatively regulates osteoblast differentiation and matrix mineralization but not mesenchymal precursor number. By co-immunoprecipitation experiments, we found that ERRγ and RUNX2 interact in an ERRγ DNA binding domain (DBD)-dependent manner. Treatment of post-confluent differentiating bone marrow stromal cell cultures with Runx2 antisense oligonucleotides resulted in a reduction of CFU-ALP/CFU-O in ERRγ +/− but not ERRγ +/+ mice compared to their corresponding sense controls. Our data indicate that ERRγ is not required for skeletal development but is a sex-dependent negative regulator of postnatal bone formation, acting in a RUNX2- and apparently differentiation stage-dependent manner.
format Online
Article
Text
id pubmed-4196935
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-41969352014-10-16 ERRγ Is Not Required for Skeletal Development but Is a RUNX2-Dependent Negative Regulator of Postnatal Bone Formation in Male Mice Cardelli, Marco Aubin, Jane E. PLoS One Research Article To assess the effects of the orphan nuclear Estrogen receptor-related receptor gamma (ERRγ) deficiency on skeletal development and bone turnover, we utilized an ERRγ global knockout mouse line. While we observed no gross morphological anomalies or difference in skeletal length in newborn mice, by 8 weeks of age ERRγ +/− males but not females exhibited increased trabecular bone, which was further increased by 14 weeks. The increase in trabecular bone was due to an increase in active osteoblasts on the bone surface, without detectable alterations in osteoclast number or activity. Consistent with the histomorphometric results, we observed an increase in gene expression of the bone formation markers alkaline phosphatase (Alp) and bone sialoprotein (Bsp) in bone and increase in serum ALP, but no change in the osteoclast regulators receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) or the resorption marker carboxy-terminal collagen crosslinks (CTX). More colony forming units-alkaline phosphatase and -osteoblast (CFU-ALP, CFU-O respectively) but not CFU-fibroblast (CFU-F) formed in ERRγ +/− versus ERRγ +/+ stromal cell cultures, suggesting that ERRγ negatively regulates osteoblast differentiation and matrix mineralization but not mesenchymal precursor number. By co-immunoprecipitation experiments, we found that ERRγ and RUNX2 interact in an ERRγ DNA binding domain (DBD)-dependent manner. Treatment of post-confluent differentiating bone marrow stromal cell cultures with Runx2 antisense oligonucleotides resulted in a reduction of CFU-ALP/CFU-O in ERRγ +/− but not ERRγ +/+ mice compared to their corresponding sense controls. Our data indicate that ERRγ is not required for skeletal development but is a sex-dependent negative regulator of postnatal bone formation, acting in a RUNX2- and apparently differentiation stage-dependent manner. Public Library of Science 2014-10-14 /pmc/articles/PMC4196935/ /pubmed/25313644 http://dx.doi.org/10.1371/journal.pone.0109592 Text en © 2014 Cardelli, Aubin http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Cardelli, Marco
Aubin, Jane E.
ERRγ Is Not Required for Skeletal Development but Is a RUNX2-Dependent Negative Regulator of Postnatal Bone Formation in Male Mice
title ERRγ Is Not Required for Skeletal Development but Is a RUNX2-Dependent Negative Regulator of Postnatal Bone Formation in Male Mice
title_full ERRγ Is Not Required for Skeletal Development but Is a RUNX2-Dependent Negative Regulator of Postnatal Bone Formation in Male Mice
title_fullStr ERRγ Is Not Required for Skeletal Development but Is a RUNX2-Dependent Negative Regulator of Postnatal Bone Formation in Male Mice
title_full_unstemmed ERRγ Is Not Required for Skeletal Development but Is a RUNX2-Dependent Negative Regulator of Postnatal Bone Formation in Male Mice
title_short ERRγ Is Not Required for Skeletal Development but Is a RUNX2-Dependent Negative Regulator of Postnatal Bone Formation in Male Mice
title_sort errγ is not required for skeletal development but is a runx2-dependent negative regulator of postnatal bone formation in male mice
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196935/
https://www.ncbi.nlm.nih.gov/pubmed/25313644
http://dx.doi.org/10.1371/journal.pone.0109592
work_keys_str_mv AT cardellimarco errgisnotrequiredforskeletaldevelopmentbutisarunx2dependentnegativeregulatorofpostnatalboneformationinmalemice
AT aubinjanee errgisnotrequiredforskeletaldevelopmentbutisarunx2dependentnegativeregulatorofpostnatalboneformationinmalemice