Cargando…

Bacterial associates of seed-parasitic wasps (Hymenoptera: Megastigmus)

BACKGROUND: The success of herbivorous insects has been shaped largely by their association with microbes. Seed parasitism is an insect feeding strategy involving intimate contact and manipulation of a plant host. Little is known about the microbial associates of seed-parasitic insects. We character...

Descripción completa

Detalles Bibliográficos
Autores principales: Paulson, Amber R, von Aderkas, Patrick, Perlman, Steve J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4197294/
https://www.ncbi.nlm.nih.gov/pubmed/25286971
http://dx.doi.org/10.1186/s12866-014-0224-4
_version_ 1782339597548650496
author Paulson, Amber R
von Aderkas, Patrick
Perlman, Steve J
author_facet Paulson, Amber R
von Aderkas, Patrick
Perlman, Steve J
author_sort Paulson, Amber R
collection PubMed
description BACKGROUND: The success of herbivorous insects has been shaped largely by their association with microbes. Seed parasitism is an insect feeding strategy involving intimate contact and manipulation of a plant host. Little is known about the microbial associates of seed-parasitic insects. We characterized the bacterial symbionts of Megastigmus (Hymenoptera: Torymidae), a lineage of seed-parasitic chalcid wasps, with the goal of identifying microbes that might play an important role in aiding development within seeds, including supplementing insect nutrition or manipulating host trees. We screened multiple populations of seven species for common facultative inherited symbionts. We also performed culture independent surveys of larvae, pupae, and adults of M. spermotrophus using 454 pyrosequencing. This major pest of Douglas-fir is the best-studied Megastigmus, and was previously shown to manipulate its tree host into redirecting resources towards unfertilized ovules. Douglas-fir ovules and the parasitoid Eurytoma sp. were also surveyed using pyrosequencing to help elucidate possible transmission mechanisms of the microbial associates of M. spermotrophus. RESULTS: Three wasp species harboured Rickettsia; two of these also harboured Wolbachia. Males and females were infected at similar frequencies, suggesting that these bacteria do not distort sex ratios. The M. spermotrophus microbiome is dominated by five bacterial OTUs, including lineages commonly found in other insect microbiomes and in environmental samples. The bacterial community associated with M. spermotrophus remained constant throughout wasp development and was dominated by a single OTU – a strain of Ralstonia, in the Betaproteobacteria, comprising over 55% of all bacterial OTUs from Megastigmus samples. This strain was also present in unparasitized ovules. CONCLUSIONS: This is the first report of Ralstonia being an abundant and potentially important member of an insect microbiome, although other closely-related Betaproteobacteria, such as Burkholderia, are important insect symbionts. We speculate that Ralstonia might play a role in nutrient recycling, perhaps by redirecting nitrogen. The developing wasp larva feeds on megagametophyte tissue, which contains the seed storage reserves and is especially rich in nitrogen. Future studies using Ralstonia-specific markers will determine its distribution in other Megastigmus species, its mode of transmission, and its role in wasp nutrition. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12866-014-0224-4) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4197294
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-41972942014-10-16 Bacterial associates of seed-parasitic wasps (Hymenoptera: Megastigmus) Paulson, Amber R von Aderkas, Patrick Perlman, Steve J BMC Microbiol Research Article BACKGROUND: The success of herbivorous insects has been shaped largely by their association with microbes. Seed parasitism is an insect feeding strategy involving intimate contact and manipulation of a plant host. Little is known about the microbial associates of seed-parasitic insects. We characterized the bacterial symbionts of Megastigmus (Hymenoptera: Torymidae), a lineage of seed-parasitic chalcid wasps, with the goal of identifying microbes that might play an important role in aiding development within seeds, including supplementing insect nutrition or manipulating host trees. We screened multiple populations of seven species for common facultative inherited symbionts. We also performed culture independent surveys of larvae, pupae, and adults of M. spermotrophus using 454 pyrosequencing. This major pest of Douglas-fir is the best-studied Megastigmus, and was previously shown to manipulate its tree host into redirecting resources towards unfertilized ovules. Douglas-fir ovules and the parasitoid Eurytoma sp. were also surveyed using pyrosequencing to help elucidate possible transmission mechanisms of the microbial associates of M. spermotrophus. RESULTS: Three wasp species harboured Rickettsia; two of these also harboured Wolbachia. Males and females were infected at similar frequencies, suggesting that these bacteria do not distort sex ratios. The M. spermotrophus microbiome is dominated by five bacterial OTUs, including lineages commonly found in other insect microbiomes and in environmental samples. The bacterial community associated with M. spermotrophus remained constant throughout wasp development and was dominated by a single OTU – a strain of Ralstonia, in the Betaproteobacteria, comprising over 55% of all bacterial OTUs from Megastigmus samples. This strain was also present in unparasitized ovules. CONCLUSIONS: This is the first report of Ralstonia being an abundant and potentially important member of an insect microbiome, although other closely-related Betaproteobacteria, such as Burkholderia, are important insect symbionts. We speculate that Ralstonia might play a role in nutrient recycling, perhaps by redirecting nitrogen. The developing wasp larva feeds on megagametophyte tissue, which contains the seed storage reserves and is especially rich in nitrogen. Future studies using Ralstonia-specific markers will determine its distribution in other Megastigmus species, its mode of transmission, and its role in wasp nutrition. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12866-014-0224-4) contains supplementary material, which is available to authorized users. BioMed Central 2014-09-25 /pmc/articles/PMC4197294/ /pubmed/25286971 http://dx.doi.org/10.1186/s12866-014-0224-4 Text en © Paulson et al.; licensee BioMed Central Ltd. 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Paulson, Amber R
von Aderkas, Patrick
Perlman, Steve J
Bacterial associates of seed-parasitic wasps (Hymenoptera: Megastigmus)
title Bacterial associates of seed-parasitic wasps (Hymenoptera: Megastigmus)
title_full Bacterial associates of seed-parasitic wasps (Hymenoptera: Megastigmus)
title_fullStr Bacterial associates of seed-parasitic wasps (Hymenoptera: Megastigmus)
title_full_unstemmed Bacterial associates of seed-parasitic wasps (Hymenoptera: Megastigmus)
title_short Bacterial associates of seed-parasitic wasps (Hymenoptera: Megastigmus)
title_sort bacterial associates of seed-parasitic wasps (hymenoptera: megastigmus)
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4197294/
https://www.ncbi.nlm.nih.gov/pubmed/25286971
http://dx.doi.org/10.1186/s12866-014-0224-4
work_keys_str_mv AT paulsonamberr bacterialassociatesofseedparasiticwaspshymenopteramegastigmus
AT vonaderkaspatrick bacterialassociatesofseedparasiticwaspshymenopteramegastigmus
AT perlmanstevej bacterialassociatesofseedparasiticwaspshymenopteramegastigmus