Cargando…
Verbascoside promotes apoptosis by regulating HIPK2–p53 signaling in human colorectal cancer
BACKGROUND: We investigated the role of the HIPK2–p53 signaling pathway in tumorigenesis and resistance to the drug Verbascoside (VB) in colorectal cancer (CRC), using in vivo and in vitro experiments. METHODS: Primary human CRC samples and normal intestinal tissues from patients were analyzed for H...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4197337/ https://www.ncbi.nlm.nih.gov/pubmed/25282590 http://dx.doi.org/10.1186/1471-2407-14-747 |
Sumario: | BACKGROUND: We investigated the role of the HIPK2–p53 signaling pathway in tumorigenesis and resistance to the drug Verbascoside (VB) in colorectal cancer (CRC), using in vivo and in vitro experiments. METHODS: Primary human CRC samples and normal intestinal tissues from patients were analyzed for HIPK2 expression by immunohistochemistry (IHC) and its expression was correlated against patients’ clinicopathological characteristics. Human CRC HCT-116 cells were implanted in BALB/c nude mice; mice with xenografted tumors were randomly administrated vehicle (control), 20, 40, or 80 mg/mL VB, or 1 mg/mL fluorouracil (5-FU). HIPK2, p53, Bax, and Bcl-2 expression in these tumors were determined by IHC. In vitro effects of VB on CRC cell proliferation and apoptosis were measured by CCK-8 assay and flow cytometry; HIPK2, p53, p-p53, Bax, and Bcl-2 were measured by western blot. RESULTS: IHC analysis for 100 human CRC tumor samples and 20 normal intestinal tissues, showed HIPK2 expression to inversely correlate with Dukes stage and depth of invasion in CRC (P < 0.05). In vivo, the inhibition rates of 20, 40, and 80 mg/mL VB on CRC xenograft tumor weight were 42.79%, 53.90%, and 60.99%, respectively, and were accompanied by increased expression of HIPK2, p53, and Bax, and decreased Bcl-2 expression in treated tumors. In vitro, VB significantly inhibited proliferation of CRC cell lines HCT-116, HT-29, LoVo, and SW620, in a time- and dose-dependent manner. The apoptosis rates of 25, 50, and 100 μM VB on HCT-116 cells were 10.83 ± 1.28, 11.25 ± 1.54, and 20.19 ± 2.87%, and on HT-29 cells were 18.92 ± 6.12, 21.57 ± 4.05, and 25.14 ± 6.73%, respectively. In summary, VB treatment significantly enhanced the protein expression of pro-apoptotic HIPK2, p53, p-p53, Bax, and decreased anti-apoptotic Bcl-2 expression in CRC cells. CONCLUSIONS: HIPK2 protein modulates the phosphorylation status of p53, and levels of Bax and Bcl-2 in CRC. We also found that VB effectively activated the HIPK2–p53 signaling pathway, resulting in increased CRC cell apoptosis. |
---|