Cargando…
The Role and Regulatory Mechanism of 14-3-3 Sigma in Human Breast Cancer
PURPOSE: 14-3-3 sigma (σ) is considered to be an important tumor suppressor and decreased expression of the same has been reported in many malignant tumors by hypermethylation at its promoter or ubiquitin-mediated proteolysis by estrogen-responsive ring finger protein (Efp). In this study, we invest...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Breast Cancer Society
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4197350/ https://www.ncbi.nlm.nih.gov/pubmed/25320618 http://dx.doi.org/10.4048/jbc.2014.17.3.207 |
Sumario: | PURPOSE: 14-3-3 sigma (σ) is considered to be an important tumor suppressor and decreased expression of the same has been reported in many malignant tumors by hypermethylation at its promoter or ubiquitin-mediated proteolysis by estrogen-responsive ring finger protein (Efp). In this study, we investigated the significance of 14-3-3 σ expression in human breast cancer and its regulatory mechanism. METHODS: Efp was silenced using small interfering RNA (siRNA) in the MCF-7 breast cancer cell line in order to examine its influence on the level of 14-3-3 σ protein. The methylation status of the 14-3-3 σ promoter was also evaluated by methylation-specific polymerase chain reaction (PCR). The expression of Efp and 14-3-3 σ in 220 human breast carcinoma tissues was assessed by immunohistochemistry. Other clinicopathological parameters were also evaluated. RESULTS: Silencing Efp in the MCF-7 breast cancer cell line resulted in increased expression of 14-3-3 σ. The Efp-positive human breast cancers were more frequently 14-3-3 σ-negative (60.5% vs. 39.5%). Hypermethylation of 14-3-3 σ was common (64.9%) and had an inverse association with 14-3-3 σ positivity (p=0.072). Positive 14-3-3 σ expression was significantly correlated with poor prognosis: disease-free survival (p=0.008) and disease-specific survival (p=0.009). CONCLUSION: Our data suggests that in human breast cancer, the regulation of 14-3-3 σ may involve two mechanisms: ubiquitin-mediated proteolysis by Efp and downregulation by hypermethylation. However, the inactivation of 14-3-3 σ is probably achieved mainly by hypermethylation. Interestingly, 14-3-3 σ turned out to be a very significant poor prognostic indicator, which is in contrast to its previously known function as a tumor suppressor, suggesting a different role of 14-3-3 σ in breast cancer. |
---|