Cargando…

LUMPY: a probabilistic framework for structural variant discovery

Comprehensive discovery of structural variation (SV) from whole genome sequencing data requires multiple detection signals including read-pair, split-read, read-depth and prior knowledge. Owing to technical challenges, extant SV discovery algorithms either use one signal in isolation, or at best use...

Descripción completa

Detalles Bibliográficos
Autores principales: Layer, Ryan M, Chiang, Colby, Quinlan, Aaron R, Hall, Ira M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4197822/
https://www.ncbi.nlm.nih.gov/pubmed/24970577
http://dx.doi.org/10.1186/gb-2014-15-6-r84
_version_ 1782339663172730880
author Layer, Ryan M
Chiang, Colby
Quinlan, Aaron R
Hall, Ira M
author_facet Layer, Ryan M
Chiang, Colby
Quinlan, Aaron R
Hall, Ira M
author_sort Layer, Ryan M
collection PubMed
description Comprehensive discovery of structural variation (SV) from whole genome sequencing data requires multiple detection signals including read-pair, split-read, read-depth and prior knowledge. Owing to technical challenges, extant SV discovery algorithms either use one signal in isolation, or at best use two sequentially. We present LUMPY, a novel SV discovery framework that naturally integrates multiple SV signals jointly across multiple samples. We show that LUMPY yields improved sensitivity, especially when SV signal is reduced owing to either low coverage data or low intra-sample variant allele frequency. We also report a set of 4,564 validated breakpoints from the NA12878 human genome. https://github.com/arq5x/lumpy-sv.
format Online
Article
Text
id pubmed-4197822
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-41978222014-10-16 LUMPY: a probabilistic framework for structural variant discovery Layer, Ryan M Chiang, Colby Quinlan, Aaron R Hall, Ira M Genome Biol Method Comprehensive discovery of structural variation (SV) from whole genome sequencing data requires multiple detection signals including read-pair, split-read, read-depth and prior knowledge. Owing to technical challenges, extant SV discovery algorithms either use one signal in isolation, or at best use two sequentially. We present LUMPY, a novel SV discovery framework that naturally integrates multiple SV signals jointly across multiple samples. We show that LUMPY yields improved sensitivity, especially when SV signal is reduced owing to either low coverage data or low intra-sample variant allele frequency. We also report a set of 4,564 validated breakpoints from the NA12878 human genome. https://github.com/arq5x/lumpy-sv. BioMed Central 2014 2014-06-26 /pmc/articles/PMC4197822/ /pubmed/24970577 http://dx.doi.org/10.1186/gb-2014-15-6-r84 Text en Copyright © 2014 Layer et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Method
Layer, Ryan M
Chiang, Colby
Quinlan, Aaron R
Hall, Ira M
LUMPY: a probabilistic framework for structural variant discovery
title LUMPY: a probabilistic framework for structural variant discovery
title_full LUMPY: a probabilistic framework for structural variant discovery
title_fullStr LUMPY: a probabilistic framework for structural variant discovery
title_full_unstemmed LUMPY: a probabilistic framework for structural variant discovery
title_short LUMPY: a probabilistic framework for structural variant discovery
title_sort lumpy: a probabilistic framework for structural variant discovery
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4197822/
https://www.ncbi.nlm.nih.gov/pubmed/24970577
http://dx.doi.org/10.1186/gb-2014-15-6-r84
work_keys_str_mv AT layerryanm lumpyaprobabilisticframeworkforstructuralvariantdiscovery
AT chiangcolby lumpyaprobabilisticframeworkforstructuralvariantdiscovery
AT quinlanaaronr lumpyaprobabilisticframeworkforstructuralvariantdiscovery
AT halliram lumpyaprobabilisticframeworkforstructuralvariantdiscovery