Cargando…
Locomotion in Extinct Giant Kangaroos: Were Sthenurines Hop-Less Monsters?
Sthenurine kangaroos (Marsupialia, Diprotodontia, Macropodoidea) were an extinct subfamily within the family Macropodidae (kangaroos and rat-kangaroos). These “short-faced browsers” first appeared in the middle Miocene, and radiated in the Plio-Pleistocene into a diversity of mostly large-bodied for...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4198187/ https://www.ncbi.nlm.nih.gov/pubmed/25333823 http://dx.doi.org/10.1371/journal.pone.0109888 |
_version_ | 1782339705844531200 |
---|---|
author | Janis, Christine M. Buttrill, Karalyn Figueirido, Borja |
author_facet | Janis, Christine M. Buttrill, Karalyn Figueirido, Borja |
author_sort | Janis, Christine M. |
collection | PubMed |
description | Sthenurine kangaroos (Marsupialia, Diprotodontia, Macropodoidea) were an extinct subfamily within the family Macropodidae (kangaroos and rat-kangaroos). These “short-faced browsers” first appeared in the middle Miocene, and radiated in the Plio-Pleistocene into a diversity of mostly large-bodied forms, more robust than extant forms in their build. The largest (Procoptodon goliah) had an estimated body mass of 240 kg, almost three times the size of the largest living kangaroos, and there is speculation whether a kangaroo of this size would be biomechanically capable of hopping locomotion. Previously described aspects of sthenurine anatomy (specialized forelimbs, rigid lumbar spine) would limit their ability to perform the characteristic kangaroo pentapedal walking (using the tail as a fifth limb), an essential gait at slower speeds as slow hopping is energetically unfeasible. Analysis of limb bone measurements of sthenurines in comparison with extant macropodoids shows a number of anatomical differences, especially in the large species. The scaling of long bone robusticity indicates that sthenurines are following the “normal” allometric trend for macropodoids, while the large extant kangaroos are relatively gracile. Other morphological differences are indicative of adaptations for a novel type of locomotor behavior in sthenurines: they lacked many specialized features for rapid hopping, and they also had anatomy indicative of supporting their body with an upright trunk (e.g., dorsally tipped ischiae), and of supporting their weight on one leg at a time (e.g., larger hips and knees, stabilized ankle joint). We propose that sthenurines adopted a bipedal striding gait (a gait occasionally observed in extant tree-kangaroos): in the smaller and earlier forms, this gait may have been employed as an alternative to pentapedal locomotion at slower speeds, while in the larger Pleistocene forms this gait may have enabled them to evolve to body sizes where hopping was no longer a feasible form of more rapid locomotion. |
format | Online Article Text |
id | pubmed-4198187 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41981872014-10-21 Locomotion in Extinct Giant Kangaroos: Were Sthenurines Hop-Less Monsters? Janis, Christine M. Buttrill, Karalyn Figueirido, Borja PLoS One Research Article Sthenurine kangaroos (Marsupialia, Diprotodontia, Macropodoidea) were an extinct subfamily within the family Macropodidae (kangaroos and rat-kangaroos). These “short-faced browsers” first appeared in the middle Miocene, and radiated in the Plio-Pleistocene into a diversity of mostly large-bodied forms, more robust than extant forms in their build. The largest (Procoptodon goliah) had an estimated body mass of 240 kg, almost three times the size of the largest living kangaroos, and there is speculation whether a kangaroo of this size would be biomechanically capable of hopping locomotion. Previously described aspects of sthenurine anatomy (specialized forelimbs, rigid lumbar spine) would limit their ability to perform the characteristic kangaroo pentapedal walking (using the tail as a fifth limb), an essential gait at slower speeds as slow hopping is energetically unfeasible. Analysis of limb bone measurements of sthenurines in comparison with extant macropodoids shows a number of anatomical differences, especially in the large species. The scaling of long bone robusticity indicates that sthenurines are following the “normal” allometric trend for macropodoids, while the large extant kangaroos are relatively gracile. Other morphological differences are indicative of adaptations for a novel type of locomotor behavior in sthenurines: they lacked many specialized features for rapid hopping, and they also had anatomy indicative of supporting their body with an upright trunk (e.g., dorsally tipped ischiae), and of supporting their weight on one leg at a time (e.g., larger hips and knees, stabilized ankle joint). We propose that sthenurines adopted a bipedal striding gait (a gait occasionally observed in extant tree-kangaroos): in the smaller and earlier forms, this gait may have been employed as an alternative to pentapedal locomotion at slower speeds, while in the larger Pleistocene forms this gait may have enabled them to evolve to body sizes where hopping was no longer a feasible form of more rapid locomotion. Public Library of Science 2014-10-15 /pmc/articles/PMC4198187/ /pubmed/25333823 http://dx.doi.org/10.1371/journal.pone.0109888 Text en © 2014 Janis et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Janis, Christine M. Buttrill, Karalyn Figueirido, Borja Locomotion in Extinct Giant Kangaroos: Were Sthenurines Hop-Less Monsters? |
title | Locomotion in Extinct Giant Kangaroos: Were Sthenurines Hop-Less Monsters? |
title_full | Locomotion in Extinct Giant Kangaroos: Were Sthenurines Hop-Less Monsters? |
title_fullStr | Locomotion in Extinct Giant Kangaroos: Were Sthenurines Hop-Less Monsters? |
title_full_unstemmed | Locomotion in Extinct Giant Kangaroos: Were Sthenurines Hop-Less Monsters? |
title_short | Locomotion in Extinct Giant Kangaroos: Were Sthenurines Hop-Less Monsters? |
title_sort | locomotion in extinct giant kangaroos: were sthenurines hop-less monsters? |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4198187/ https://www.ncbi.nlm.nih.gov/pubmed/25333823 http://dx.doi.org/10.1371/journal.pone.0109888 |
work_keys_str_mv | AT janischristinem locomotioninextinctgiantkangaroosweresthenurineshoplessmonsters AT buttrillkaralyn locomotioninextinctgiantkangaroosweresthenurineshoplessmonsters AT figueiridoborja locomotioninextinctgiantkangaroosweresthenurineshoplessmonsters |