Cargando…
Visualization-Aided Classification Ensembles Discriminate Lung Adenocarcinoma and Squamous Cell Carcinoma Samples Using Their Gene Expression Profiles
INTRODUCTION: The widespread application of microarray experiments to cancer research is astounding including lung cancer, one of the most common fatal human tumors. Among non-small cell lung carcinoma (NSCLC), there are two major histological types of NSCLC, adenocarcinoma (AC) and squamous cell ca...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4198193/ https://www.ncbi.nlm.nih.gov/pubmed/25335090 http://dx.doi.org/10.1371/journal.pone.0110052 |
Sumario: | INTRODUCTION: The widespread application of microarray experiments to cancer research is astounding including lung cancer, one of the most common fatal human tumors. Among non-small cell lung carcinoma (NSCLC), there are two major histological types of NSCLC, adenocarcinoma (AC) and squamous cell carcinoma (SCC). RESULTS: In this paper, we proposed to integrate a visualization method called Radial Coordinate Visualization (Radviz) with a suitable classifier, aiming at discriminating two NSCLC subtypes using patients' gene expression profiles. Our analyses on simulated data and a real microarray dataset show that combining with a classification method, Radviz may play a role in selecting relevant features and ameliorating parsimony, while the final model suffers no or least loss of accuracy. Most importantly, a graphic representation is more easily understandable and implementable for a clinician than statistical methods and/or mathematic equations. CONCLUSION: To conclude, using the NSCLC microarray data presented here as a benchmark, the comprehensive understanding of the underlying mechanism associated with NSCLC and of the mechanisms with its subtypes and respective stages will become reality in the near future. |
---|