Cargando…

SAMSN1 Is a Tumor Suppressor Gene in Multiple Myeloma()()

Multiple myeloma (MM), a hematological malignancy characterized by the clonal growth of malignant plasma cells (PCs) in the bone marrow, is preceded by the benign asymptomatic condition, monoclonal gammopathy of undetermined significance (MGUS). Several genetic abnormalities have been identified as...

Descripción completa

Detalles Bibliográficos
Autores principales: Noll, Jacqueline E., Hewett, Duncan R., Williams, Sharon A., Vandyke, Kate, Kok, Chung, To, Luen B., Zannettino, Andrew C.W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Neoplasia Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4198825/
https://www.ncbi.nlm.nih.gov/pubmed/25117979
http://dx.doi.org/10.1016/j.neo.2014.07.002
Descripción
Sumario:Multiple myeloma (MM), a hematological malignancy characterized by the clonal growth of malignant plasma cells (PCs) in the bone marrow, is preceded by the benign asymptomatic condition, monoclonal gammopathy of undetermined significance (MGUS). Several genetic abnormalities have been identified as critical for the development of MM; however, a number of these abnormalities are also found in patients with MGUS, indicating that there are other, as yet unidentified, factors that contribute to the onset of MM disease. In this study, we identify a Samsn1 gene deletion in the 5TGM1/C57BL/KaLwRij murine model of myeloma. In addition, SAMSN1 expression is reduced in the malignant CD138 + PCs of patients with MM and this reduced expression correlates to total PC burden. We identify promoter methylation as a potential mechanism through which SAMSN1 expression is modulated in human myeloma cell lines. Notably, re-expression of Samsn1 in the 5TGM1 murine PC line resulted in complete inhibition of MM disease development in vivo and decreased proliferation in stromal cell–PC co-cultures in vitro. This is the first study to identify deletion of a key gene in the C57BL/KaLwRij mice that also displays reduced gene expression in patients with MM and is therefore likely to play an integral role in MM disease development.