Cargando…
How to avoid missing data and the problems they pose: design considerations
Autores principales: | Lin, Julia Y., Lu, Ying, Tu, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Editorial Department of the Shanghai Archives of Psychiatry
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4198852/ https://www.ncbi.nlm.nih.gov/pubmed/25324625 http://dx.doi.org/10.3969/j.issn.1002-0829.2012.03.010 |
Ejemplares similares
-
Establishing a data monitoring committee for clinical trials
por: LIN, Julia Y, et al.
Publicado: (2014) -
Log-transformation and its implications for data analysis
por: FENG, Changyong, et al.
Publicado: (2014) -
Does More Data Mean Higher Efficiency? An Experience from Pre- and Post-treatment Study with Missing Data
por: WANG, Hongyue, et al.
Publicado: (2016) -
Power analysis for cross-sectional and longitudinal study designs
por: LU, Naiji, et al.
Publicado: (2013) -
Rank regression: an alternative regression approach for data with outliers
por: CHEN, Tian, et al.
Publicado: (2014)