Cargando…
Cavity-free plasmonic nanolasing enabled by dispersionless stopped light
When light is brought to a standstill, its interaction with gain media increases dramatically due to a singularity in the density of optical states. Concurrently, stopped light engenders an inherent and cavity-free feedback mechanism, similar in effect to the feedback that has been demonstrated and...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199200/ https://www.ncbi.nlm.nih.gov/pubmed/25230337 http://dx.doi.org/10.1038/ncomms5972 |
Sumario: | When light is brought to a standstill, its interaction with gain media increases dramatically due to a singularity in the density of optical states. Concurrently, stopped light engenders an inherent and cavity-free feedback mechanism, similar in effect to the feedback that has been demonstrated and exploited in large-scale disordered media and random lasers. Here we study the spatial, temporal and spectral signatures of lasing in planar gain-enhanced nanoplasmonic structures at near-infrared frequencies and show that the stopped-light feedback mechanism allows for nanolasing without a cavity. We reveal that in the absence of cavity-induced feedback, the subwavelength lasing mode forms dynamically as a phase-locked superposition of quasi dispersion-free waveguide modes. This mechanism proves remarkably robust against interface roughness and offers a new route towards nanolasing, the experimental realization of ultra-thin surface emitting lasers, and cavity-free active quantum plasmonics. |
---|