Cargando…
Homeostatic structural plasticity can account for topology changes following deafferentation and focal stroke
After brain lesions caused by tumors or stroke, or after lasting loss of input (deafferentation), inter- and intra-regional brain networks respond with complex changes in topology. Not only areas directly affected by the lesion but also regions remote from the lesion may alter their connectivity—a p...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199279/ https://www.ncbi.nlm.nih.gov/pubmed/25360087 http://dx.doi.org/10.3389/fnana.2014.00115 |
_version_ | 1782339882727768064 |
---|---|
author | Butz, Markus Steenbuck, Ines D. van Ooyen, Arjen |
author_facet | Butz, Markus Steenbuck, Ines D. van Ooyen, Arjen |
author_sort | Butz, Markus |
collection | PubMed |
description | After brain lesions caused by tumors or stroke, or after lasting loss of input (deafferentation), inter- and intra-regional brain networks respond with complex changes in topology. Not only areas directly affected by the lesion but also regions remote from the lesion may alter their connectivity—a phenomenon known as diaschisis. Changes in network topology after brain lesions can lead to cognitive decline and increasing functional disability. However, the principles governing changes in network topology are poorly understood. Here, we investigated whether homeostatic structural plasticity can account for changes in network topology after deafferentation and brain lesions. Homeostatic structural plasticity postulates that neurons aim to maintain a desired level of electrical activity by deleting synapses when neuronal activity is too high and by providing new synaptic contacts when activity is too low. Using our Model of Structural Plasticity, we explored how local changes in connectivity induced by a focal loss of input affected global network topology. In accordance with experimental and clinical data, we found that after partial deafferentation, the network as a whole became more random, although it maintained its small-world topology, while deafferentated neurons increased their betweenness centrality as they rewired and returned to the homeostatic range of activity. Furthermore, deafferentated neurons increased their global but decreased their local efficiency and got longer tailed degree distributions, indicating the emergence of hub neurons. Together, our results suggest that homeostatic structural plasticity may be an important driving force for lesion-induced network reorganization and that the increase in betweenness centrality of deafferentated areas may hold as a biomarker for brain repair. |
format | Online Article Text |
id | pubmed-4199279 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-41992792014-10-30 Homeostatic structural plasticity can account for topology changes following deafferentation and focal stroke Butz, Markus Steenbuck, Ines D. van Ooyen, Arjen Front Neuroanat Neuroscience After brain lesions caused by tumors or stroke, or after lasting loss of input (deafferentation), inter- and intra-regional brain networks respond with complex changes in topology. Not only areas directly affected by the lesion but also regions remote from the lesion may alter their connectivity—a phenomenon known as diaschisis. Changes in network topology after brain lesions can lead to cognitive decline and increasing functional disability. However, the principles governing changes in network topology are poorly understood. Here, we investigated whether homeostatic structural plasticity can account for changes in network topology after deafferentation and brain lesions. Homeostatic structural plasticity postulates that neurons aim to maintain a desired level of electrical activity by deleting synapses when neuronal activity is too high and by providing new synaptic contacts when activity is too low. Using our Model of Structural Plasticity, we explored how local changes in connectivity induced by a focal loss of input affected global network topology. In accordance with experimental and clinical data, we found that after partial deafferentation, the network as a whole became more random, although it maintained its small-world topology, while deafferentated neurons increased their betweenness centrality as they rewired and returned to the homeostatic range of activity. Furthermore, deafferentated neurons increased their global but decreased their local efficiency and got longer tailed degree distributions, indicating the emergence of hub neurons. Together, our results suggest that homeostatic structural plasticity may be an important driving force for lesion-induced network reorganization and that the increase in betweenness centrality of deafferentated areas may hold as a biomarker for brain repair. Frontiers Media S.A. 2014-10-16 /pmc/articles/PMC4199279/ /pubmed/25360087 http://dx.doi.org/10.3389/fnana.2014.00115 Text en Copyright © 2014 Butz, Steenbuck and van Ooyen. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Butz, Markus Steenbuck, Ines D. van Ooyen, Arjen Homeostatic structural plasticity can account for topology changes following deafferentation and focal stroke |
title | Homeostatic structural plasticity can account for topology changes following deafferentation and focal stroke |
title_full | Homeostatic structural plasticity can account for topology changes following deafferentation and focal stroke |
title_fullStr | Homeostatic structural plasticity can account for topology changes following deafferentation and focal stroke |
title_full_unstemmed | Homeostatic structural plasticity can account for topology changes following deafferentation and focal stroke |
title_short | Homeostatic structural plasticity can account for topology changes following deafferentation and focal stroke |
title_sort | homeostatic structural plasticity can account for topology changes following deafferentation and focal stroke |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199279/ https://www.ncbi.nlm.nih.gov/pubmed/25360087 http://dx.doi.org/10.3389/fnana.2014.00115 |
work_keys_str_mv | AT butzmarkus homeostaticstructuralplasticitycanaccountfortopologychangesfollowingdeafferentationandfocalstroke AT steenbuckinesd homeostaticstructuralplasticitycanaccountfortopologychangesfollowingdeafferentationandfocalstroke AT vanooyenarjen homeostaticstructuralplasticitycanaccountfortopologychangesfollowingdeafferentationandfocalstroke |