Cargando…
Likelihood-Based Gene Annotations for Gap Filling and Quality Assessment in Genome-Scale Metabolic Models
Genome-scale metabolic models provide a powerful means to harness information from genomes to deepen biological insights. With exponentially increasing sequencing capacity, there is an enormous need for automated reconstruction techniques that can provide more accurate models in a short time frame....
Autores principales: | Benedict, Matthew N., Mundy, Michael B., Henry, Christopher S., Chia, Nicholas, Price, Nathan D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199484/ https://www.ncbi.nlm.nih.gov/pubmed/25329157 http://dx.doi.org/10.1371/journal.pcbi.1003882 |
Ejemplares similares
-
fastGapFill: efficient gap filling in metabolic networks
por: Thiele, Ines, et al.
Publicado: (2014) -
2330. Acute Flaccid Myelitis Recovery: Filling in the Gaps and Assessing Likelihood for Independent Living
por: Downey Quick, Rachel, et al.
Publicado: (2019) -
Filling the gaps in the genomic landscape
por: Williams, David, et al.
Publicado: (2010) -
Mackinac: a bridge between ModelSEED and COBRApy to generate and analyze genome-scale metabolic models
por: Mundy, Michael, et al.
Publicado: (2017) -
Reconstructor: a COBRApy compatible tool for automated genome-scale metabolic network reconstruction with parsimonious flux-based gap-filling
por: Jenior, Matthew L, et al.
Publicado: (2023)