Cargando…

Schlafen 1 Inhibits the Proliferation and Tube Formation of Endothelial Progenitor Cells

Endothelial progenitor cells (EPCs) are the major source of cells that restore the endothelium during reendothelialization. This study was designed to investigate whether Schlafen 1 (Slfn1) has an effect on the proliferation and tube formation of EPCs in vivo. Slfn1 was expressed in rat EPCs. The ov...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuang, Chun-yan, Yang, Tian-he, Zhang, Yang, Zhang, Lu, Wu, Qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199616/
https://www.ncbi.nlm.nih.gov/pubmed/25329797
http://dx.doi.org/10.1371/journal.pone.0109711
Descripción
Sumario:Endothelial progenitor cells (EPCs) are the major source of cells that restore the endothelium during reendothelialization. This study was designed to investigate whether Schlafen 1 (Slfn1) has an effect on the proliferation and tube formation of EPCs in vivo. Slfn1 was expressed in rat EPCs. The overexpression of Slfn1 suppressed the proliferation and tube formation of EPCs; conversely, the knockdown of Slfn1 by shRNA promoted the proliferation and tube formation of EPCs. Furthermore, when Slfn1 was overexpressed, the EPCs were arrested in the G1 phase of the cell cycle. In contrast, when Slfn1 was knocked down, the EPCs progressed into the S phase of the cell cycle. Additionally, the overexpression of Slfn1 decreased the expression of Cyclin D1, whereas the knockdown of Slfn1 increased the expression of Cyclin D1; these findings suggest that Cyclin D1 is downstream of Slfn1 in Slfn1-mediated EPC proliferation. Taken together, these results indicate a key role for Slfn1 in the regulation of EPC biological behavior, which may provide a new target for the use of EPCs during reendothelialization.