Cargando…
Effects of Infection on Honey Bee Population Dynamics: A Model
We propose a model that combines the dynamics of the spread of disease within a bee colony with the underlying demographic dynamics of the colony to determine the ultimate fate of the colony under different scenarios. The model suggests that key factors in the survival or collapse of a honey bee col...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199628/ https://www.ncbi.nlm.nih.gov/pubmed/25329468 http://dx.doi.org/10.1371/journal.pone.0110237 |
_version_ | 1782339943709802496 |
---|---|
author | Betti, Matt I. Wahl, Lindi M. Zamir, Mair |
author_facet | Betti, Matt I. Wahl, Lindi M. Zamir, Mair |
author_sort | Betti, Matt I. |
collection | PubMed |
description | We propose a model that combines the dynamics of the spread of disease within a bee colony with the underlying demographic dynamics of the colony to determine the ultimate fate of the colony under different scenarios. The model suggests that key factors in the survival or collapse of a honey bee colony in the face of an infection are the rate of transmission of the infection and the disease-induced death rate. An increase in the disease-induced death rate, which can be thought of as an increase in the severity of the disease, may actually help the colony overcome the disease and survive through winter. By contrast, an increase in the transmission rate, which means that bees are being infected at an earlier age, has a drastic deleterious effect. Another important finding relates to the timing of infection in relation to the onset of winter, indicating that in a time interval of approximately 20 days before the onset of winter the colony is most affected by the onset of infection. The results suggest further that the age of recruitment of hive bees to foraging duties is a good early marker for the survival or collapse of a honey bee colony in the face of infection, which is consistent with experimental evidence but the model provides insight into the underlying mechanisms. The most important result of the study is a clear distinction between an exposure of the honey bee colony to an environmental hazard such as pesticides or insecticides, or an exposure to an infectious disease. The results indicate unequivocally that in the scenarios that we have examined, and perhaps more generally, an infectious disease is far more hazardous to the survival of a bee colony than an environmental hazard that causes an equal death rate in foraging bees. |
format | Online Article Text |
id | pubmed-4199628 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41996282014-10-21 Effects of Infection on Honey Bee Population Dynamics: A Model Betti, Matt I. Wahl, Lindi M. Zamir, Mair PLoS One Research Article We propose a model that combines the dynamics of the spread of disease within a bee colony with the underlying demographic dynamics of the colony to determine the ultimate fate of the colony under different scenarios. The model suggests that key factors in the survival or collapse of a honey bee colony in the face of an infection are the rate of transmission of the infection and the disease-induced death rate. An increase in the disease-induced death rate, which can be thought of as an increase in the severity of the disease, may actually help the colony overcome the disease and survive through winter. By contrast, an increase in the transmission rate, which means that bees are being infected at an earlier age, has a drastic deleterious effect. Another important finding relates to the timing of infection in relation to the onset of winter, indicating that in a time interval of approximately 20 days before the onset of winter the colony is most affected by the onset of infection. The results suggest further that the age of recruitment of hive bees to foraging duties is a good early marker for the survival or collapse of a honey bee colony in the face of infection, which is consistent with experimental evidence but the model provides insight into the underlying mechanisms. The most important result of the study is a clear distinction between an exposure of the honey bee colony to an environmental hazard such as pesticides or insecticides, or an exposure to an infectious disease. The results indicate unequivocally that in the scenarios that we have examined, and perhaps more generally, an infectious disease is far more hazardous to the survival of a bee colony than an environmental hazard that causes an equal death rate in foraging bees. Public Library of Science 2014-10-16 /pmc/articles/PMC4199628/ /pubmed/25329468 http://dx.doi.org/10.1371/journal.pone.0110237 Text en © 2014 Betti et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Betti, Matt I. Wahl, Lindi M. Zamir, Mair Effects of Infection on Honey Bee Population Dynamics: A Model |
title | Effects of Infection on Honey Bee Population Dynamics: A Model |
title_full | Effects of Infection on Honey Bee Population Dynamics: A Model |
title_fullStr | Effects of Infection on Honey Bee Population Dynamics: A Model |
title_full_unstemmed | Effects of Infection on Honey Bee Population Dynamics: A Model |
title_short | Effects of Infection on Honey Bee Population Dynamics: A Model |
title_sort | effects of infection on honey bee population dynamics: a model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199628/ https://www.ncbi.nlm.nih.gov/pubmed/25329468 http://dx.doi.org/10.1371/journal.pone.0110237 |
work_keys_str_mv | AT bettimatti effectsofinfectiononhoneybeepopulationdynamicsamodel AT wahllindim effectsofinfectiononhoneybeepopulationdynamicsamodel AT zamirmair effectsofinfectiononhoneybeepopulationdynamicsamodel |