Cargando…
Bayesian Genomic-Enabled Prediction as an Inverse Problem
Genomic-enabled prediction in plant and animal breeding has become an active area of research. Many prediction models address the collinearity that arises when the number (p) of molecular markers (e.g. single-nucleotide polymorphisms) is larger than the sample size (n). Here we propose four Bayesian...
Autores principales: | Cuevas, Jaime, Pérez-Elizalde, Sergio, Soberanis, Victor, Pérez-Rodríguez, Paulino, Gianola, Daniel, Crossa, José |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199705/ https://www.ncbi.nlm.nih.gov/pubmed/25155273 http://dx.doi.org/10.1534/g3.114.013094 |
Ejemplares similares
-
A Bayesian Decision Theory Approach for Genomic Selection
por: Villar-Hernández, Bartolo de Jesús, et al.
Publicado: (2018) -
Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models
por: Cuevas, Jaime, et al.
Publicado: (2016) -
A Bayesian Genomic Regression Model with Skew Normal Random Errors
por: Pérez-Rodríguez, Paulino, et al.
Publicado: (2018) -
Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction
por: Bandeira e Sousa, Massaine, et al.
Publicado: (2017) -
Threshold Models for Genome-Enabled Prediction of Ordinal Categorical Traits in Plant Breeding
por: Montesinos-López, Osval A., et al.
Publicado: (2014)