Cargando…
Arsenic exposure and glutamate-induced gliotransmitter release from astrocytes☆
The present study used cultures of primary astrocytes, isolated from neonatal rats, to verify the hypothesis that arsenite-induced neurotoxicity can influence neuronal function by altering glutamate-induced gliotransmitter release. Primary astrocytes were exposed to 0, 2.5, 5, 10, 20 or 30 µM arseni...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4200718/ https://www.ncbi.nlm.nih.gov/pubmed/25337094 http://dx.doi.org/10.3969/j.issn.1673-5374.2012.31.005 |
_version_ | 1782340085032681472 |
---|---|
author | Wang, Yan Zhao, Fenghong Liao, Yingjun Jin, Yaping Sun, Guifan |
author_facet | Wang, Yan Zhao, Fenghong Liao, Yingjun Jin, Yaping Sun, Guifan |
author_sort | Wang, Yan |
collection | PubMed |
description | The present study used cultures of primary astrocytes, isolated from neonatal rats, to verify the hypothesis that arsenite-induced neurotoxicity can influence neuronal function by altering glutamate-induced gliotransmitter release. Primary astrocytes were exposed to 0, 2.5, 5, 10, 20 or 30 µM arsenite for 24 hours. Cell viability and morphological observations revealed that 5 µM arsenic exposure could induce cytotoxicity. Cells were then cultured in the presence of 0, 2.5, 5, or 10 µM arsenite for 24 hours and stimulated with 25 µM glutamate for 10 minutes. Results showed that [Ca(2+)](i) in astrocytes exposed to 5 and 10 µM arsenite was significantly increased and levels of D-serine, γ-aminobutyric acid and glycine in cultures exposed to 2.5–10 µM arsenite were also increased. However, glutamate levels in the media were significantly increased only after treatment with 10 µM arsenite. In conclusion, our findings suggest that arsenic exposure may affect glutamate-induced gliotransmitter release from astrocytes and further disturb neuronal function. |
format | Online Article Text |
id | pubmed-4200718 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Medknow Publications & Media Pvt Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-42007182014-10-21 Arsenic exposure and glutamate-induced gliotransmitter release from astrocytes☆ Wang, Yan Zhao, Fenghong Liao, Yingjun Jin, Yaping Sun, Guifan Neural Regen Res Research and Report Article: Brain Injury and Neural Regeneration The present study used cultures of primary astrocytes, isolated from neonatal rats, to verify the hypothesis that arsenite-induced neurotoxicity can influence neuronal function by altering glutamate-induced gliotransmitter release. Primary astrocytes were exposed to 0, 2.5, 5, 10, 20 or 30 µM arsenite for 24 hours. Cell viability and morphological observations revealed that 5 µM arsenic exposure could induce cytotoxicity. Cells were then cultured in the presence of 0, 2.5, 5, or 10 µM arsenite for 24 hours and stimulated with 25 µM glutamate for 10 minutes. Results showed that [Ca(2+)](i) in astrocytes exposed to 5 and 10 µM arsenite was significantly increased and levels of D-serine, γ-aminobutyric acid and glycine in cultures exposed to 2.5–10 µM arsenite were also increased. However, glutamate levels in the media were significantly increased only after treatment with 10 µM arsenite. In conclusion, our findings suggest that arsenic exposure may affect glutamate-induced gliotransmitter release from astrocytes and further disturb neuronal function. Medknow Publications & Media Pvt Ltd 2012-11-05 /pmc/articles/PMC4200718/ /pubmed/25337094 http://dx.doi.org/10.3969/j.issn.1673-5374.2012.31.005 Text en Copyright: © Neural Regeneration Research http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research and Report Article: Brain Injury and Neural Regeneration Wang, Yan Zhao, Fenghong Liao, Yingjun Jin, Yaping Sun, Guifan Arsenic exposure and glutamate-induced gliotransmitter release from astrocytes☆ |
title | Arsenic exposure and glutamate-induced gliotransmitter release from astrocytes☆ |
title_full | Arsenic exposure and glutamate-induced gliotransmitter release from astrocytes☆ |
title_fullStr | Arsenic exposure and glutamate-induced gliotransmitter release from astrocytes☆ |
title_full_unstemmed | Arsenic exposure and glutamate-induced gliotransmitter release from astrocytes☆ |
title_short | Arsenic exposure and glutamate-induced gliotransmitter release from astrocytes☆ |
title_sort | arsenic exposure and glutamate-induced gliotransmitter release from astrocytes☆ |
topic | Research and Report Article: Brain Injury and Neural Regeneration |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4200718/ https://www.ncbi.nlm.nih.gov/pubmed/25337094 http://dx.doi.org/10.3969/j.issn.1673-5374.2012.31.005 |
work_keys_str_mv | AT wangyan arsenicexposureandglutamateinducedgliotransmitterreleasefromastrocytes AT zhaofenghong arsenicexposureandglutamateinducedgliotransmitterreleasefromastrocytes AT liaoyingjun arsenicexposureandglutamateinducedgliotransmitterreleasefromastrocytes AT jinyaping arsenicexposureandglutamateinducedgliotransmitterreleasefromastrocytes AT sunguifan arsenicexposureandglutamateinducedgliotransmitterreleasefromastrocytes |