Cargando…
The non-homologous end-joining pathway is involved in stable transformation in rice
Stable transformation with T-DNA needs the coordinated activities of many proteins derived from both host plant cells and Agrobacterium. In dicot plants, including Arabidopsis, it has been suggested that non-homologous end-joining (NHEJ)—one of the main DNA double-strand break repair pathways—is inv...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201092/ https://www.ncbi.nlm.nih.gov/pubmed/25368624 http://dx.doi.org/10.3389/fpls.2014.00560 |
Sumario: | Stable transformation with T-DNA needs the coordinated activities of many proteins derived from both host plant cells and Agrobacterium. In dicot plants, including Arabidopsis, it has been suggested that non-homologous end-joining (NHEJ)—one of the main DNA double-strand break repair pathways—is involved in the T-DNA integration step that is crucial to stable transformation. However, how this pathway is involved remains unclear as results with NHEJ mutants in Arabidopsis have given inconsistent results. Recently, a system for visualization of stable expression of genes located on T-DNA has been established in rice callus. Stable expression was shown to be reduced significantly in NHEJ knock-down rice calli, suggesting strongly that NHEJ is involved in Agrobacterium-mediated stable transformation in rice. Since rice transformation is now efficient and reproducible, rice is a good model plant in which to elucidate the molecular mechanisms of T-DNA integration. |
---|