Cargando…
Integrative analysis of multi-dimensional imaging genomics data for Alzheimer's disease prediction
In this paper, we explore the effects of integrating multi-dimensional imaging genomics data for Alzheimer's disease (AD) prediction using machine learning approaches. Precisely, we compare our three recent proposed feature selection methods [i.e., multiple kernel learning (MKL), high-order gra...
Autores principales: | Zhang, Ziming, Huang, Heng, Shen, Dinggang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201101/ https://www.ncbi.nlm.nih.gov/pubmed/25368574 http://dx.doi.org/10.3389/fnagi.2014.00260 |
Ejemplares similares
-
Subclass-based multi-task learning for Alzheimer's disease diagnosis
por: Suk, Heung-II, et al.
Publicado: (2014) -
The prediction of Alzheimer’s disease through multi-trait genetic modeling
por: Clark, Kaylyn, et al.
Publicado: (2023) -
Brain Connectivity Based Prediction of Alzheimer’s Disease in Patients With Mild Cognitive Impairment Based on Multi-Modal Images
por: Zheng, Weihao, et al.
Publicado: (2019) -
Discovery of multi-dimensional modules by integrative analysis of cancer genomic data
por: Zhang, Shihua, et al.
Publicado: (2012) -
High Dimensional Classification of Structural MRI Alzheimer’s Disease Data Based on Large Scale Regularization
por: Casanova, Ramon, et al.
Publicado: (2011)