Cargando…

Synthesis of a Poly-hydroxypyrolidine-Based inhibitor of Mycobacterium tuberculosis GlgE

[Image: see text] Long treatment times, poor drug compliance, and natural selection during treatment of Mycobacterium tuberculosis (Mtb) have given rise to extensively drug-resistant tuberculosis (XDR-TB). As a result, there is a need to identify new antituberculosis drug targets. Mtb GlgE is a malt...

Descripción completa

Detalles Bibliográficos
Autores principales: Veleti, Sri Kumar, Lindenberger, Jared J., Thanna, Sandeep, Ronning, Donald R., Sucheck, Steven J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201354/
https://www.ncbi.nlm.nih.gov/pubmed/25137149
http://dx.doi.org/10.1021/jo501481r
Descripción
Sumario:[Image: see text] Long treatment times, poor drug compliance, and natural selection during treatment of Mycobacterium tuberculosis (Mtb) have given rise to extensively drug-resistant tuberculosis (XDR-TB). As a result, there is a need to identify new antituberculosis drug targets. Mtb GlgE is a maltosyl transferase involved in α-glucan biosynthesis. Mutation of GlgE in Mtb increases the concentration of maltose-1-phosphate (M1P), one substrate for GlgE, causing rapid cell death. We have designed 2,5-dideoxy-3-O-α-d-glucopyranosyl-2,5-imino-d-mannitol (9) to act as an inhibitor of GlgE. Compound 9 was synthesized using a convergent synthesis by coupling thioglycosyl donor 14 and 5-azido-3-O-benzyl-5-deoxy-1,2-O-isopropylidene-β-d-fructopyranose (23) to form disaccharide 24. A reduction and intramolecular reductive amination transformed the intermediate disaccharide 24 to the desired pyrolidine 9. Compound 9 inhibited both Mtb GlgE and a variant of Streptomyces coelicolor (Sco) GlgEI with K(i) = 237 ± 27 μM and K(i) = 102 ± 7.52 μM, respectively. The results confirm that a Sco GlgE-V279S variant can be used as a model for Mtb GlgE. In conclusion, we designed a lead transition state inhibitor of GlgE, which will be instrumental in further elucidation of the enzymatic mechanism of Mtb GlgE.