Cargando…
A Multi-Atlas Based Method for Automated Anatomical Rat Brain MRI Segmentation and Extraction of PET Activity
INTRODUCTION: Preclinical in vivo imaging requires precise and reproducible delineation of brain structures. Manual segmentation is time consuming and operator dependent. Automated segmentation as usually performed via single atlas registration fails to account for anatomo-physiological variability....
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201469/ https://www.ncbi.nlm.nih.gov/pubmed/25330005 http://dx.doi.org/10.1371/journal.pone.0109113 |
_version_ | 1782340177985798144 |
---|---|
author | Lancelot, Sophie Roche, Roxane Slimen, Afifa Bouillot, Caroline Levigoureux, Elise Langlois, Jean-Baptiste Zimmer, Luc Costes, Nicolas |
author_facet | Lancelot, Sophie Roche, Roxane Slimen, Afifa Bouillot, Caroline Levigoureux, Elise Langlois, Jean-Baptiste Zimmer, Luc Costes, Nicolas |
author_sort | Lancelot, Sophie |
collection | PubMed |
description | INTRODUCTION: Preclinical in vivo imaging requires precise and reproducible delineation of brain structures. Manual segmentation is time consuming and operator dependent. Automated segmentation as usually performed via single atlas registration fails to account for anatomo-physiological variability. We present, evaluate, and make available a multi-atlas approach for automatically segmenting rat brain MRI and extracting PET activies. METHODS: High-resolution 7T 2DT2 MR images of 12 Sprague-Dawley rat brains were manually segmented into 27-VOI label volumes using detailed protocols. Automated methods were developed with 7/12 atlas datasets, i.e. the MRIs and their associated label volumes. MRIs were registered to a common space, where an MRI template and a maximum probability atlas were created. Three automated methods were tested: 1/registering individual MRIs to the template, and using a single atlas (SA), 2/using the maximum probability atlas (MP), and 3/registering the MRIs from the multi-atlas dataset to an individual MRI, propagating the label volumes and fusing them in individual MRI space (propagation & fusion, PF). Evaluation was performed on the five remaining rats which additionally underwent [(18)F]FDG PET. Automated and manual segmentations were compared for morphometric performance (assessed by comparing volume bias and Dice overlap index) and functional performance (evaluated by comparing extracted PET measures). RESULTS: Only the SA method showed volume bias. Dice indices were significantly different between methods (PF>MP>SA). PET regional measures were more accurate with multi-atlas methods than with SA method. CONCLUSIONS: Multi-atlas methods outperform SA for automated anatomical brain segmentation and PET measure’s extraction. They perform comparably to manual segmentation for FDG-PET quantification. Multi-atlas methods are suitable for rapid reproducible VOI analyses. |
format | Online Article Text |
id | pubmed-4201469 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-42014692014-10-21 A Multi-Atlas Based Method for Automated Anatomical Rat Brain MRI Segmentation and Extraction of PET Activity Lancelot, Sophie Roche, Roxane Slimen, Afifa Bouillot, Caroline Levigoureux, Elise Langlois, Jean-Baptiste Zimmer, Luc Costes, Nicolas PLoS One Research Article INTRODUCTION: Preclinical in vivo imaging requires precise and reproducible delineation of brain structures. Manual segmentation is time consuming and operator dependent. Automated segmentation as usually performed via single atlas registration fails to account for anatomo-physiological variability. We present, evaluate, and make available a multi-atlas approach for automatically segmenting rat brain MRI and extracting PET activies. METHODS: High-resolution 7T 2DT2 MR images of 12 Sprague-Dawley rat brains were manually segmented into 27-VOI label volumes using detailed protocols. Automated methods were developed with 7/12 atlas datasets, i.e. the MRIs and their associated label volumes. MRIs were registered to a common space, where an MRI template and a maximum probability atlas were created. Three automated methods were tested: 1/registering individual MRIs to the template, and using a single atlas (SA), 2/using the maximum probability atlas (MP), and 3/registering the MRIs from the multi-atlas dataset to an individual MRI, propagating the label volumes and fusing them in individual MRI space (propagation & fusion, PF). Evaluation was performed on the five remaining rats which additionally underwent [(18)F]FDG PET. Automated and manual segmentations were compared for morphometric performance (assessed by comparing volume bias and Dice overlap index) and functional performance (evaluated by comparing extracted PET measures). RESULTS: Only the SA method showed volume bias. Dice indices were significantly different between methods (PF>MP>SA). PET regional measures were more accurate with multi-atlas methods than with SA method. CONCLUSIONS: Multi-atlas methods outperform SA for automated anatomical brain segmentation and PET measure’s extraction. They perform comparably to manual segmentation for FDG-PET quantification. Multi-atlas methods are suitable for rapid reproducible VOI analyses. Public Library of Science 2014-10-17 /pmc/articles/PMC4201469/ /pubmed/25330005 http://dx.doi.org/10.1371/journal.pone.0109113 Text en © 2014 Lancelot et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Lancelot, Sophie Roche, Roxane Slimen, Afifa Bouillot, Caroline Levigoureux, Elise Langlois, Jean-Baptiste Zimmer, Luc Costes, Nicolas A Multi-Atlas Based Method for Automated Anatomical Rat Brain MRI Segmentation and Extraction of PET Activity |
title | A Multi-Atlas Based Method for Automated Anatomical Rat Brain MRI Segmentation and Extraction of PET Activity |
title_full | A Multi-Atlas Based Method for Automated Anatomical Rat Brain MRI Segmentation and Extraction of PET Activity |
title_fullStr | A Multi-Atlas Based Method for Automated Anatomical Rat Brain MRI Segmentation and Extraction of PET Activity |
title_full_unstemmed | A Multi-Atlas Based Method for Automated Anatomical Rat Brain MRI Segmentation and Extraction of PET Activity |
title_short | A Multi-Atlas Based Method for Automated Anatomical Rat Brain MRI Segmentation and Extraction of PET Activity |
title_sort | multi-atlas based method for automated anatomical rat brain mri segmentation and extraction of pet activity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201469/ https://www.ncbi.nlm.nih.gov/pubmed/25330005 http://dx.doi.org/10.1371/journal.pone.0109113 |
work_keys_str_mv | AT lancelotsophie amultiatlasbasedmethodforautomatedanatomicalratbrainmrisegmentationandextractionofpetactivity AT rocheroxane amultiatlasbasedmethodforautomatedanatomicalratbrainmrisegmentationandextractionofpetactivity AT slimenafifa amultiatlasbasedmethodforautomatedanatomicalratbrainmrisegmentationandextractionofpetactivity AT bouillotcaroline amultiatlasbasedmethodforautomatedanatomicalratbrainmrisegmentationandextractionofpetactivity AT levigoureuxelise amultiatlasbasedmethodforautomatedanatomicalratbrainmrisegmentationandextractionofpetactivity AT langloisjeanbaptiste amultiatlasbasedmethodforautomatedanatomicalratbrainmrisegmentationandextractionofpetactivity AT zimmerluc amultiatlasbasedmethodforautomatedanatomicalratbrainmrisegmentationandextractionofpetactivity AT costesnicolas amultiatlasbasedmethodforautomatedanatomicalratbrainmrisegmentationandextractionofpetactivity AT lancelotsophie multiatlasbasedmethodforautomatedanatomicalratbrainmrisegmentationandextractionofpetactivity AT rocheroxane multiatlasbasedmethodforautomatedanatomicalratbrainmrisegmentationandextractionofpetactivity AT slimenafifa multiatlasbasedmethodforautomatedanatomicalratbrainmrisegmentationandextractionofpetactivity AT bouillotcaroline multiatlasbasedmethodforautomatedanatomicalratbrainmrisegmentationandextractionofpetactivity AT levigoureuxelise multiatlasbasedmethodforautomatedanatomicalratbrainmrisegmentationandextractionofpetactivity AT langloisjeanbaptiste multiatlasbasedmethodforautomatedanatomicalratbrainmrisegmentationandextractionofpetactivity AT zimmerluc multiatlasbasedmethodforautomatedanatomicalratbrainmrisegmentationandextractionofpetactivity AT costesnicolas multiatlasbasedmethodforautomatedanatomicalratbrainmrisegmentationandextractionofpetactivity |