Cargando…
Geometrical Custom Modeling of Human Cornea In Vivo and Its Use for the Diagnosis of Corneal Ectasia
AIM: To establish a new procedure for 3D geometric reconstruction of the human cornea to obtain a solid model that represents a personalized and in vivo morphology of both the anterior and posterior corneal surfaces. This model is later analyzed to obtain geometric variables enabling the characteriz...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201525/ https://www.ncbi.nlm.nih.gov/pubmed/25329896 http://dx.doi.org/10.1371/journal.pone.0110249 |
Sumario: | AIM: To establish a new procedure for 3D geometric reconstruction of the human cornea to obtain a solid model that represents a personalized and in vivo morphology of both the anterior and posterior corneal surfaces. This model is later analyzed to obtain geometric variables enabling the characterization of the corneal geometry and establishing a new clinical diagnostic criterion in order to distinguish between healthy corneas and corneas with keratoconus. METHOD: The method for the geometric reconstruction of the cornea consists of the following steps: capture and preprocessing of the spatial point clouds provided by the Sirius topographer that represent both anterior and posterior corneal surfaces, reconstruction of the corneal geometric surfaces and generation of the solid model. Later, geometric variables are extracted from the model obtained and statistically analyzed to detect deformations of the cornea. RESULTS: The variables that achieved the best results in the diagnosis of keratoconus were anterior corneal surface area (ROC area: 0.847, p<0.000, std. error: 0.038, 95% CI: 0.777 to 0.925), posterior corneal surface area (ROC area: 0.807, p<0.000, std. error: 0.042, 95% CI: 0,726 to 0,889), anterior apex deviation (ROC area: 0.735, p<0.000, std. error: 0.053, 95% CI: 0.630 to 0.840) and posterior apex deviation (ROC area: 0.891, p<0.000, std. error: 0.039, 95% CI: 0.8146 to 0.9672). CONCLUSION: Geometric modeling enables accurate characterization of the human cornea. Also, from a clinical point of view, the procedure described has established a new approach for the study of eye-related diseases. |
---|