Cargando…
Perinatal Exposure to Bisphenol-A Impairs Spatial Memory through Upregulation of Neurexin1 and Neuroligin3 Expression in Male Mouse Brain
Bisphenol-A (BPA), a well known endocrine disruptor, impairs learning and memory in rodents. However, the underlying molecular mechanism of BPA induced impairment in learning and memory is not well known. As synaptic plasticity is the cellular basis of memory, the present study investigated the effe...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201550/ https://www.ncbi.nlm.nih.gov/pubmed/25330104 http://dx.doi.org/10.1371/journal.pone.0110482 |
_version_ | 1782340192999309312 |
---|---|
author | Kumar, Dhiraj Thakur, Mahendra Kumar |
author_facet | Kumar, Dhiraj Thakur, Mahendra Kumar |
author_sort | Kumar, Dhiraj |
collection | PubMed |
description | Bisphenol-A (BPA), a well known endocrine disruptor, impairs learning and memory in rodents. However, the underlying molecular mechanism of BPA induced impairment in learning and memory is not well known. As synaptic plasticity is the cellular basis of memory, the present study investigated the effect of perinatal exposure to BPA on the expression of synaptic proteins neurexin1 (Nrxn1) and neuroligin3 (Nlgn3), dendritic spine density and spatial memory in postnatal male mice. The pregnant mice were orally administered BPA (50 µg/kgbw/d) from gestation day (GD) 7 to postnatal day (PND) 21 and sesame oil was used as a vehicle control. In Morris water maze (MWM) test, BPA extended the escape latency time to locate the hidden platform in 8 weeks male mice. RT-PCR and Immunoblotting results showed significant upregulation of Nrxn1 and Nlgn3 expression in both cerebral cortex and hippocampus of 3 and 8 weeks male mice. This was further substantiated by in-situ hybridization and immunofluorescence techniques. BPA also significantly increased the density of dendritic spines in both regions, as analyzed by rapid Golgi staining. Thus our data suggest that perinatal exposure to BPA impairs spatial memory through upregulation of expression of synaptic proteins Nrxn1 and Nlgn3 and increased dendritic spine density in cerebral cortex and hippocampus of postnatal male mice. |
format | Online Article Text |
id | pubmed-4201550 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-42015502014-10-21 Perinatal Exposure to Bisphenol-A Impairs Spatial Memory through Upregulation of Neurexin1 and Neuroligin3 Expression in Male Mouse Brain Kumar, Dhiraj Thakur, Mahendra Kumar PLoS One Research Article Bisphenol-A (BPA), a well known endocrine disruptor, impairs learning and memory in rodents. However, the underlying molecular mechanism of BPA induced impairment in learning and memory is not well known. As synaptic plasticity is the cellular basis of memory, the present study investigated the effect of perinatal exposure to BPA on the expression of synaptic proteins neurexin1 (Nrxn1) and neuroligin3 (Nlgn3), dendritic spine density and spatial memory in postnatal male mice. The pregnant mice were orally administered BPA (50 µg/kgbw/d) from gestation day (GD) 7 to postnatal day (PND) 21 and sesame oil was used as a vehicle control. In Morris water maze (MWM) test, BPA extended the escape latency time to locate the hidden platform in 8 weeks male mice. RT-PCR and Immunoblotting results showed significant upregulation of Nrxn1 and Nlgn3 expression in both cerebral cortex and hippocampus of 3 and 8 weeks male mice. This was further substantiated by in-situ hybridization and immunofluorescence techniques. BPA also significantly increased the density of dendritic spines in both regions, as analyzed by rapid Golgi staining. Thus our data suggest that perinatal exposure to BPA impairs spatial memory through upregulation of expression of synaptic proteins Nrxn1 and Nlgn3 and increased dendritic spine density in cerebral cortex and hippocampus of postnatal male mice. Public Library of Science 2014-10-17 /pmc/articles/PMC4201550/ /pubmed/25330104 http://dx.doi.org/10.1371/journal.pone.0110482 Text en © 2014 Kumar, Thakur http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Kumar, Dhiraj Thakur, Mahendra Kumar Perinatal Exposure to Bisphenol-A Impairs Spatial Memory through Upregulation of Neurexin1 and Neuroligin3 Expression in Male Mouse Brain |
title | Perinatal Exposure to Bisphenol-A Impairs Spatial Memory through Upregulation of Neurexin1 and Neuroligin3 Expression in Male Mouse Brain |
title_full | Perinatal Exposure to Bisphenol-A Impairs Spatial Memory through Upregulation of Neurexin1 and Neuroligin3 Expression in Male Mouse Brain |
title_fullStr | Perinatal Exposure to Bisphenol-A Impairs Spatial Memory through Upregulation of Neurexin1 and Neuroligin3 Expression in Male Mouse Brain |
title_full_unstemmed | Perinatal Exposure to Bisphenol-A Impairs Spatial Memory through Upregulation of Neurexin1 and Neuroligin3 Expression in Male Mouse Brain |
title_short | Perinatal Exposure to Bisphenol-A Impairs Spatial Memory through Upregulation of Neurexin1 and Neuroligin3 Expression in Male Mouse Brain |
title_sort | perinatal exposure to bisphenol-a impairs spatial memory through upregulation of neurexin1 and neuroligin3 expression in male mouse brain |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201550/ https://www.ncbi.nlm.nih.gov/pubmed/25330104 http://dx.doi.org/10.1371/journal.pone.0110482 |
work_keys_str_mv | AT kumardhiraj perinatalexposuretobisphenolaimpairsspatialmemorythroughupregulationofneurexin1andneuroligin3expressioninmalemousebrain AT thakurmahendrakumar perinatalexposuretobisphenolaimpairsspatialmemorythroughupregulationofneurexin1andneuroligin3expressioninmalemousebrain |