Cargando…

Long-term potentiation can be induced in the CA1 region of hippocampus in the absence of αCaMKII T286-autophosphorylation

α-calcium/calmodulin-dependent protein kinase (αCaMKII) T286-autophosphorylation provides a short-term molecular memory that was thought to be required for LTP and for learning and memory. However, it has been shown that learning can occur in αCaMKII-T286A mutant mice after a massed training protoco...

Descripción completa

Detalles Bibliográficos
Autores principales: Villers, Agnès, Giese, Karl Peter, Ris, Laurence
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201817/
https://www.ncbi.nlm.nih.gov/pubmed/25322797
http://dx.doi.org/10.1101/lm.035972.114
Descripción
Sumario:α-calcium/calmodulin-dependent protein kinase (αCaMKII) T286-autophosphorylation provides a short-term molecular memory that was thought to be required for LTP and for learning and memory. However, it has been shown that learning can occur in αCaMKII-T286A mutant mice after a massed training protocol. This raises the question of whether there might be a form of LTP in these mice that can occur without T286 autophosphorylation. In this study, we confirmed that in CA1 pyramidal cells, LTP induced in acute hippocampal slices, after a recovery period in an interface chamber, is strictly dependent on postsynaptic αCaMKII autophosphorylation. However, we demonstrated that αCaMKII-autophosphorylation-independent plasticity can occur in the hippocampus but at the expense of synaptic specificity. This nonspecific LTP was observed in mutant and wild-type mice after a recovery period in a submersion chamber and was independent of NMDA receptors. Moreover, when slices prepared from mutant mice were preincubated during 2 h with rapamycin, high-frequency trains induced a synapse-specific LTP which was added to the nonspecific LTP. This specific LTP was related to an increase in the duration and the amplitude of NMDA receptor-mediated response induced by rapamycin.