Cargando…
Databases for lncRNAs: a comparative evaluation of emerging tools
The vast majority of the human transcriptome does not code for proteins. Advances in transcriptome arrays and deep sequencing are giving rise to a fast accumulation of large data sets, particularly of long noncoding RNAs (lncRNAs). Although it is clear that individual lncRNAs may play important and...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201818/ https://www.ncbi.nlm.nih.gov/pubmed/25323317 http://dx.doi.org/10.1261/rna.044040.113 |
Sumario: | The vast majority of the human transcriptome does not code for proteins. Advances in transcriptome arrays and deep sequencing are giving rise to a fast accumulation of large data sets, particularly of long noncoding RNAs (lncRNAs). Although it is clear that individual lncRNAs may play important and diverse biological roles, there is a large gap between the number of existing lncRNAs and their known relation to molecular/cellular function. This and related information have recently been gathered in several databases dedicated to lncRNA research. Here, we review the content of general and more specialized databases on lncRNAs. We evaluate these resources in terms of the quality of annotations, the reporting of validated or predicted molecular associations, and their integration with other resources and computational analysis tools. We illustrate our findings using known and novel cancer-related lncRNAs. Finally, we discuss limitations and highlight potential future directions for these databases to help delineating functions associated with lncRNAs. |
---|