Cargando…
Lineage-Specific Conserved Noncoding Sequences of Plant Genomes: Their Possible Role in Nucleosome Positioning
Many studies on conserved noncoding sequences (CNSs) have found that CNSs are enriched significantly in regulatory sequence elements. We conducted whole-genome analysis on plant CNSs to identify lineage-specific CNSs in eudicots, monocots, angiosperms, and vascular plants based on the premise that l...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4202324/ https://www.ncbi.nlm.nih.gov/pubmed/25364802 http://dx.doi.org/10.1093/gbe/evu188 |
Sumario: | Many studies on conserved noncoding sequences (CNSs) have found that CNSs are enriched significantly in regulatory sequence elements. We conducted whole-genome analysis on plant CNSs to identify lineage-specific CNSs in eudicots, monocots, angiosperms, and vascular plants based on the premise that lineage-specific CNSs define lineage-specific characters and functions in groups of organisms. We identified 27 eudicot, 204 monocot, 6,536 grass, 19 angiosperm, and 2 vascular plant lineage-specific CNSs (lengths range from 16 to 1,517 bp) that presumably originated in their respective common ancestors. A stronger constraint on the CNSs located in the untranslated regions was observed. The CNSs were often flanked by genes involved in transcription regulation. A drop of A+T content near the border of CNSs was observed and CNS regions showed a higher nucleosome occupancy probability. These CNSs are candidate regulatory elements, which are expected to define lineage-specific features of various plant groups. |
---|