Cargando…
Plant vigour at establishment and following defoliation are both associated with responses to drought in perennial ryegrass (Lolium perenne L.)
Periodic drought events present a significant and, with climate change, increasing constraint on temperate forage plants’ production. Consequently, improving plants’ adaptive response to abiotic stress is a key goal to ensure agricultural productivity in these regions. In this study we developed a n...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203121/ https://www.ncbi.nlm.nih.gov/pubmed/25104762 http://dx.doi.org/10.1093/jxb/eru318 |
Sumario: | Periodic drought events present a significant and, with climate change, increasing constraint on temperate forage plants’ production. Consequently, improving plants’ adaptive response to abiotic stress is a key goal to ensure agricultural productivity in these regions. In this study we developed a new methodology, using both area-based comparison and soil water content measurements of individual non-irrigated and irrigated clones, to assess performance of perennial ryegrass (Lolium perenne L.) genotypes subjected to moisture stress in a simulated competitive environment. We applied this method to the evaluation of a full-sibling population from a pair cross between genotypes from a New Zealand cultivar and a Moroccan ecotype. Our hypothesis was that: (i) both leaf lamina regrowth after defoliation (LR) and plant vigour affect plant performance during drought and rehydration; and (ii) quantitative trait loci (QTLs) associated with plant performance under moisture stress could be identified. Differences amongst genotypes in dry matter (DM) production, early vigour at establishment, leaf elongation rate and LR were measured. LR explained most of the variation in DM production during exposure to moisture deficit and rehydration followed by plant vigour, indicated by initial DM production in both treatments and subsequent measures of DM production of irrigated clones. We identified two main QTL regions associated with DM production and LR, both during drought exposure and rehydration. Further research focused on these regions should improve our understanding of the genetic control of drought response in this forage crop and potentially other grass species with significant synteny, and support improvement in performance through molecular breeding approaches. |
---|