Cargando…
Asymmetry in olfactory generalization and the inclusion criterion in ants
Animals constantly face the challenge of extracting important information out of their environment, and for many animals much of this information is chemical in nature. The ability to discriminate and generalize between chemical stimuli is extremely important and is commonly thought to depend mostly...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203582/ https://www.ncbi.nlm.nih.gov/pubmed/25346797 http://dx.doi.org/10.4161/cib.29163 |
Sumario: | Animals constantly face the challenge of extracting important information out of their environment, and for many animals much of this information is chemical in nature. The ability to discriminate and generalize between chemical stimuli is extremely important and is commonly thought to depend mostly on the structural similarity between the different stimuli. However, we previously provided evidence that in the carpenter ant Camponotus aethiops, generalization not only depends on structural similarity, but also on the animal’s previous training experience. When individual ants were conditioned to substance A, they generalized toward a mixture of A and B. However, when trained to substance B, they did not generalize toward this mixture, resulting in asymmetrical generalization. This asymmetry followed an inclusion criterion, where the ants consistently generalized from a molecule with a long carbon chain to molecules with a shorter chain, but not the other way around. Here I will review the evidence for the inclusion criterion, describe possible proximate mechanisms underlying this phenomenon as well as discuss its potential adaptive significance. |
---|