Cargando…
The Challenges of Genome-Wide Interaction Studies: Lessons to Learn from the Analysis of HDL Blood Levels
Genome-wide association studies (GWAS) have revealed 74 single nucleotide polymorphisms (SNPs) associated with high-density lipoprotein cholesterol (HDL) blood levels. This study is, to our knowledge, the first genome-wide interaction study (GWIS) to identify SNP×SNP interactions associated with HDL...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203717/ https://www.ncbi.nlm.nih.gov/pubmed/25329471 http://dx.doi.org/10.1371/journal.pone.0109290 |
_version_ | 1782340420061102080 |
---|---|
author | van Leeuwen, Elisabeth M. Smouter, Françoise A. S. Kam-Thong, Tony Karbalai, Nazanin Smith, Albert V. Harris, Tamara B. Launer, Lenore J. Sitlani, Colleen M. Li, Guo Brody, Jennifer A. Bis, Joshua C. White, Charles C. Jaiswal, Alok Oostra, Ben A. Hofman, Albert Rivadeneira, Fernando Uitterlinden, Andre G. Boerwinkle, Eric Ballantyne, Christie M. Gudnason, Vilmundur Psaty, Bruce M. Cupples, L. Adrienne Järvelin, Marjo-Riitta Ripatti, Samuli Isaacs, Aaron Müller-Myhsok, Bertram Karssen, Lennart C. van Duijn, Cornelia M. |
author_facet | van Leeuwen, Elisabeth M. Smouter, Françoise A. S. Kam-Thong, Tony Karbalai, Nazanin Smith, Albert V. Harris, Tamara B. Launer, Lenore J. Sitlani, Colleen M. Li, Guo Brody, Jennifer A. Bis, Joshua C. White, Charles C. Jaiswal, Alok Oostra, Ben A. Hofman, Albert Rivadeneira, Fernando Uitterlinden, Andre G. Boerwinkle, Eric Ballantyne, Christie M. Gudnason, Vilmundur Psaty, Bruce M. Cupples, L. Adrienne Järvelin, Marjo-Riitta Ripatti, Samuli Isaacs, Aaron Müller-Myhsok, Bertram Karssen, Lennart C. van Duijn, Cornelia M. |
author_sort | van Leeuwen, Elisabeth M. |
collection | PubMed |
description | Genome-wide association studies (GWAS) have revealed 74 single nucleotide polymorphisms (SNPs) associated with high-density lipoprotein cholesterol (HDL) blood levels. This study is, to our knowledge, the first genome-wide interaction study (GWIS) to identify SNP×SNP interactions associated with HDL levels. We performed a GWIS in the Rotterdam Study (RS) cohort I (RS-I) using the GLIDE tool which leverages the massively parallel computing power of Graphics Processing Units (GPUs) to perform linear regression on all genome-wide pairs of SNPs. By performing a meta-analysis together with Rotterdam Study cohorts II and III (RS-II and RS-III), we were able to filter 181 interaction terms with a p-value<1 · 10(−8) that replicated in the two independent cohorts. We were not able to replicate any of these interaction term in the AGES, ARIC, CHS, ERF, FHS and NFBC-66 cohorts (N (total) = 30,011) when adjusting for multiple testing. Our GWIS resulted in the consistent finding of a possible interaction between rs774801 in ARMC8 (ENSG00000114098) and rs12442098 in SPATA8 (ENSG00000185594) being associated with HDL levels. However, p-values do not reach the preset Bonferroni correction of the p-values. Our study suggest that even for highly genetically determined traits such as HDL the sample sizes needed to detect SNP×SNP interactions are large and the 2-step filtering approaches do not yield a solution. Here we present our analysis plan and our reservations concerning GWIS. |
format | Online Article Text |
id | pubmed-4203717 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-42037172014-10-27 The Challenges of Genome-Wide Interaction Studies: Lessons to Learn from the Analysis of HDL Blood Levels van Leeuwen, Elisabeth M. Smouter, Françoise A. S. Kam-Thong, Tony Karbalai, Nazanin Smith, Albert V. Harris, Tamara B. Launer, Lenore J. Sitlani, Colleen M. Li, Guo Brody, Jennifer A. Bis, Joshua C. White, Charles C. Jaiswal, Alok Oostra, Ben A. Hofman, Albert Rivadeneira, Fernando Uitterlinden, Andre G. Boerwinkle, Eric Ballantyne, Christie M. Gudnason, Vilmundur Psaty, Bruce M. Cupples, L. Adrienne Järvelin, Marjo-Riitta Ripatti, Samuli Isaacs, Aaron Müller-Myhsok, Bertram Karssen, Lennart C. van Duijn, Cornelia M. PLoS One Research Article Genome-wide association studies (GWAS) have revealed 74 single nucleotide polymorphisms (SNPs) associated with high-density lipoprotein cholesterol (HDL) blood levels. This study is, to our knowledge, the first genome-wide interaction study (GWIS) to identify SNP×SNP interactions associated with HDL levels. We performed a GWIS in the Rotterdam Study (RS) cohort I (RS-I) using the GLIDE tool which leverages the massively parallel computing power of Graphics Processing Units (GPUs) to perform linear regression on all genome-wide pairs of SNPs. By performing a meta-analysis together with Rotterdam Study cohorts II and III (RS-II and RS-III), we were able to filter 181 interaction terms with a p-value<1 · 10(−8) that replicated in the two independent cohorts. We were not able to replicate any of these interaction term in the AGES, ARIC, CHS, ERF, FHS and NFBC-66 cohorts (N (total) = 30,011) when adjusting for multiple testing. Our GWIS resulted in the consistent finding of a possible interaction between rs774801 in ARMC8 (ENSG00000114098) and rs12442098 in SPATA8 (ENSG00000185594) being associated with HDL levels. However, p-values do not reach the preset Bonferroni correction of the p-values. Our study suggest that even for highly genetically determined traits such as HDL the sample sizes needed to detect SNP×SNP interactions are large and the 2-step filtering approaches do not yield a solution. Here we present our analysis plan and our reservations concerning GWIS. Public Library of Science 2014-10-20 /pmc/articles/PMC4203717/ /pubmed/25329471 http://dx.doi.org/10.1371/journal.pone.0109290 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article van Leeuwen, Elisabeth M. Smouter, Françoise A. S. Kam-Thong, Tony Karbalai, Nazanin Smith, Albert V. Harris, Tamara B. Launer, Lenore J. Sitlani, Colleen M. Li, Guo Brody, Jennifer A. Bis, Joshua C. White, Charles C. Jaiswal, Alok Oostra, Ben A. Hofman, Albert Rivadeneira, Fernando Uitterlinden, Andre G. Boerwinkle, Eric Ballantyne, Christie M. Gudnason, Vilmundur Psaty, Bruce M. Cupples, L. Adrienne Järvelin, Marjo-Riitta Ripatti, Samuli Isaacs, Aaron Müller-Myhsok, Bertram Karssen, Lennart C. van Duijn, Cornelia M. The Challenges of Genome-Wide Interaction Studies: Lessons to Learn from the Analysis of HDL Blood Levels |
title | The Challenges of Genome-Wide Interaction Studies: Lessons to Learn from the Analysis of HDL Blood Levels |
title_full | The Challenges of Genome-Wide Interaction Studies: Lessons to Learn from the Analysis of HDL Blood Levels |
title_fullStr | The Challenges of Genome-Wide Interaction Studies: Lessons to Learn from the Analysis of HDL Blood Levels |
title_full_unstemmed | The Challenges of Genome-Wide Interaction Studies: Lessons to Learn from the Analysis of HDL Blood Levels |
title_short | The Challenges of Genome-Wide Interaction Studies: Lessons to Learn from the Analysis of HDL Blood Levels |
title_sort | challenges of genome-wide interaction studies: lessons to learn from the analysis of hdl blood levels |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203717/ https://www.ncbi.nlm.nih.gov/pubmed/25329471 http://dx.doi.org/10.1371/journal.pone.0109290 |
work_keys_str_mv | AT vanleeuwenelisabethm thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT smouterfrancoiseas thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT kamthongtony thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT karbalainazanin thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT smithalbertv thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT harristamarab thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT launerlenorej thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT sitlanicolleenm thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT liguo thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT brodyjennifera thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT bisjoshuac thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT whitecharlesc thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT jaiswalalok thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT oostrabena thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT hofmanalbert thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT rivadeneirafernando thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT uitterlindenandreg thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT boerwinkleeric thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT ballantynechristiem thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT gudnasonvilmundur thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT psatybrucem thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT cupplesladrienne thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT jarvelinmarjoriitta thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT ripattisamuli thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT isaacsaaron thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT mullermyhsokbertram thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT karssenlennartc thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT vanduijncorneliam thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT vanleeuwenelisabethm challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT smouterfrancoiseas challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT kamthongtony challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT karbalainazanin challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT smithalbertv challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT harristamarab challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT launerlenorej challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT sitlanicolleenm challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT liguo challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT brodyjennifera challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT bisjoshuac challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT whitecharlesc challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT jaiswalalok challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT oostrabena challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT hofmanalbert challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT rivadeneirafernando challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT uitterlindenandreg challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT boerwinkleeric challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT ballantynechristiem challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT gudnasonvilmundur challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT psatybrucem challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT cupplesladrienne challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT jarvelinmarjoriitta challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT ripattisamuli challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT isaacsaaron challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT mullermyhsokbertram challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT karssenlennartc challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels AT vanduijncorneliam challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels |