Cargando…

The Challenges of Genome-Wide Interaction Studies: Lessons to Learn from the Analysis of HDL Blood Levels

Genome-wide association studies (GWAS) have revealed 74 single nucleotide polymorphisms (SNPs) associated with high-density lipoprotein cholesterol (HDL) blood levels. This study is, to our knowledge, the first genome-wide interaction study (GWIS) to identify SNP×SNP interactions associated with HDL...

Descripción completa

Detalles Bibliográficos
Autores principales: van Leeuwen, Elisabeth M., Smouter, Françoise A. S., Kam-Thong, Tony, Karbalai, Nazanin, Smith, Albert V., Harris, Tamara B., Launer, Lenore J., Sitlani, Colleen M., Li, Guo, Brody, Jennifer A., Bis, Joshua C., White, Charles C., Jaiswal, Alok, Oostra, Ben A., Hofman, Albert, Rivadeneira, Fernando, Uitterlinden, Andre G., Boerwinkle, Eric, Ballantyne, Christie M., Gudnason, Vilmundur, Psaty, Bruce M., Cupples, L. Adrienne, Järvelin, Marjo-Riitta, Ripatti, Samuli, Isaacs, Aaron, Müller-Myhsok, Bertram, Karssen, Lennart C., van Duijn, Cornelia M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203717/
https://www.ncbi.nlm.nih.gov/pubmed/25329471
http://dx.doi.org/10.1371/journal.pone.0109290
_version_ 1782340420061102080
author van Leeuwen, Elisabeth M.
Smouter, Françoise A. S.
Kam-Thong, Tony
Karbalai, Nazanin
Smith, Albert V.
Harris, Tamara B.
Launer, Lenore J.
Sitlani, Colleen M.
Li, Guo
Brody, Jennifer A.
Bis, Joshua C.
White, Charles C.
Jaiswal, Alok
Oostra, Ben A.
Hofman, Albert
Rivadeneira, Fernando
Uitterlinden, Andre G.
Boerwinkle, Eric
Ballantyne, Christie M.
Gudnason, Vilmundur
Psaty, Bruce M.
Cupples, L. Adrienne
Järvelin, Marjo-Riitta
Ripatti, Samuli
Isaacs, Aaron
Müller-Myhsok, Bertram
Karssen, Lennart C.
van Duijn, Cornelia M.
author_facet van Leeuwen, Elisabeth M.
Smouter, Françoise A. S.
Kam-Thong, Tony
Karbalai, Nazanin
Smith, Albert V.
Harris, Tamara B.
Launer, Lenore J.
Sitlani, Colleen M.
Li, Guo
Brody, Jennifer A.
Bis, Joshua C.
White, Charles C.
Jaiswal, Alok
Oostra, Ben A.
Hofman, Albert
Rivadeneira, Fernando
Uitterlinden, Andre G.
Boerwinkle, Eric
Ballantyne, Christie M.
Gudnason, Vilmundur
Psaty, Bruce M.
Cupples, L. Adrienne
Järvelin, Marjo-Riitta
Ripatti, Samuli
Isaacs, Aaron
Müller-Myhsok, Bertram
Karssen, Lennart C.
van Duijn, Cornelia M.
author_sort van Leeuwen, Elisabeth M.
collection PubMed
description Genome-wide association studies (GWAS) have revealed 74 single nucleotide polymorphisms (SNPs) associated with high-density lipoprotein cholesterol (HDL) blood levels. This study is, to our knowledge, the first genome-wide interaction study (GWIS) to identify SNP×SNP interactions associated with HDL levels. We performed a GWIS in the Rotterdam Study (RS) cohort I (RS-I) using the GLIDE tool which leverages the massively parallel computing power of Graphics Processing Units (GPUs) to perform linear regression on all genome-wide pairs of SNPs. By performing a meta-analysis together with Rotterdam Study cohorts II and III (RS-II and RS-III), we were able to filter 181 interaction terms with a p-value<1 · 10(−8) that replicated in the two independent cohorts. We were not able to replicate any of these interaction term in the AGES, ARIC, CHS, ERF, FHS and NFBC-66 cohorts (N (total) = 30,011) when adjusting for multiple testing. Our GWIS resulted in the consistent finding of a possible interaction between rs774801 in ARMC8 (ENSG00000114098) and rs12442098 in SPATA8 (ENSG00000185594) being associated with HDL levels. However, p-values do not reach the preset Bonferroni correction of the p-values. Our study suggest that even for highly genetically determined traits such as HDL the sample sizes needed to detect SNP×SNP interactions are large and the 2-step filtering approaches do not yield a solution. Here we present our analysis plan and our reservations concerning GWIS.
format Online
Article
Text
id pubmed-4203717
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-42037172014-10-27 The Challenges of Genome-Wide Interaction Studies: Lessons to Learn from the Analysis of HDL Blood Levels van Leeuwen, Elisabeth M. Smouter, Françoise A. S. Kam-Thong, Tony Karbalai, Nazanin Smith, Albert V. Harris, Tamara B. Launer, Lenore J. Sitlani, Colleen M. Li, Guo Brody, Jennifer A. Bis, Joshua C. White, Charles C. Jaiswal, Alok Oostra, Ben A. Hofman, Albert Rivadeneira, Fernando Uitterlinden, Andre G. Boerwinkle, Eric Ballantyne, Christie M. Gudnason, Vilmundur Psaty, Bruce M. Cupples, L. Adrienne Järvelin, Marjo-Riitta Ripatti, Samuli Isaacs, Aaron Müller-Myhsok, Bertram Karssen, Lennart C. van Duijn, Cornelia M. PLoS One Research Article Genome-wide association studies (GWAS) have revealed 74 single nucleotide polymorphisms (SNPs) associated with high-density lipoprotein cholesterol (HDL) blood levels. This study is, to our knowledge, the first genome-wide interaction study (GWIS) to identify SNP×SNP interactions associated with HDL levels. We performed a GWIS in the Rotterdam Study (RS) cohort I (RS-I) using the GLIDE tool which leverages the massively parallel computing power of Graphics Processing Units (GPUs) to perform linear regression on all genome-wide pairs of SNPs. By performing a meta-analysis together with Rotterdam Study cohorts II and III (RS-II and RS-III), we were able to filter 181 interaction terms with a p-value<1 · 10(−8) that replicated in the two independent cohorts. We were not able to replicate any of these interaction term in the AGES, ARIC, CHS, ERF, FHS and NFBC-66 cohorts (N (total) = 30,011) when adjusting for multiple testing. Our GWIS resulted in the consistent finding of a possible interaction between rs774801 in ARMC8 (ENSG00000114098) and rs12442098 in SPATA8 (ENSG00000185594) being associated with HDL levels. However, p-values do not reach the preset Bonferroni correction of the p-values. Our study suggest that even for highly genetically determined traits such as HDL the sample sizes needed to detect SNP×SNP interactions are large and the 2-step filtering approaches do not yield a solution. Here we present our analysis plan and our reservations concerning GWIS. Public Library of Science 2014-10-20 /pmc/articles/PMC4203717/ /pubmed/25329471 http://dx.doi.org/10.1371/journal.pone.0109290 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
spellingShingle Research Article
van Leeuwen, Elisabeth M.
Smouter, Françoise A. S.
Kam-Thong, Tony
Karbalai, Nazanin
Smith, Albert V.
Harris, Tamara B.
Launer, Lenore J.
Sitlani, Colleen M.
Li, Guo
Brody, Jennifer A.
Bis, Joshua C.
White, Charles C.
Jaiswal, Alok
Oostra, Ben A.
Hofman, Albert
Rivadeneira, Fernando
Uitterlinden, Andre G.
Boerwinkle, Eric
Ballantyne, Christie M.
Gudnason, Vilmundur
Psaty, Bruce M.
Cupples, L. Adrienne
Järvelin, Marjo-Riitta
Ripatti, Samuli
Isaacs, Aaron
Müller-Myhsok, Bertram
Karssen, Lennart C.
van Duijn, Cornelia M.
The Challenges of Genome-Wide Interaction Studies: Lessons to Learn from the Analysis of HDL Blood Levels
title The Challenges of Genome-Wide Interaction Studies: Lessons to Learn from the Analysis of HDL Blood Levels
title_full The Challenges of Genome-Wide Interaction Studies: Lessons to Learn from the Analysis of HDL Blood Levels
title_fullStr The Challenges of Genome-Wide Interaction Studies: Lessons to Learn from the Analysis of HDL Blood Levels
title_full_unstemmed The Challenges of Genome-Wide Interaction Studies: Lessons to Learn from the Analysis of HDL Blood Levels
title_short The Challenges of Genome-Wide Interaction Studies: Lessons to Learn from the Analysis of HDL Blood Levels
title_sort challenges of genome-wide interaction studies: lessons to learn from the analysis of hdl blood levels
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203717/
https://www.ncbi.nlm.nih.gov/pubmed/25329471
http://dx.doi.org/10.1371/journal.pone.0109290
work_keys_str_mv AT vanleeuwenelisabethm thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT smouterfrancoiseas thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT kamthongtony thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT karbalainazanin thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT smithalbertv thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT harristamarab thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT launerlenorej thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT sitlanicolleenm thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT liguo thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT brodyjennifera thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT bisjoshuac thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT whitecharlesc thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT jaiswalalok thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT oostrabena thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT hofmanalbert thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT rivadeneirafernando thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT uitterlindenandreg thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT boerwinkleeric thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT ballantynechristiem thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT gudnasonvilmundur thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT psatybrucem thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT cupplesladrienne thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT jarvelinmarjoriitta thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT ripattisamuli thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT isaacsaaron thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT mullermyhsokbertram thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT karssenlennartc thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT vanduijncorneliam thechallengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT vanleeuwenelisabethm challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT smouterfrancoiseas challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT kamthongtony challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT karbalainazanin challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT smithalbertv challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT harristamarab challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT launerlenorej challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT sitlanicolleenm challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT liguo challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT brodyjennifera challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT bisjoshuac challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT whitecharlesc challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT jaiswalalok challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT oostrabena challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT hofmanalbert challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT rivadeneirafernando challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT uitterlindenandreg challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT boerwinkleeric challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT ballantynechristiem challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT gudnasonvilmundur challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT psatybrucem challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT cupplesladrienne challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT jarvelinmarjoriitta challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT ripattisamuli challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT isaacsaaron challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT mullermyhsokbertram challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT karssenlennartc challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels
AT vanduijncorneliam challengesofgenomewideinteractionstudieslessonstolearnfromtheanalysisofhdlbloodlevels