Cargando…
Quantification of Heterogeneity as a Biomarker in Tumor Imaging: A Systematic Review
BACKGROUND: Many techniques are proposed for the quantification of tumor heterogeneity as an imaging biomarker for differentiation between tumor types, tumor grading, response monitoring and outcome prediction. However, in clinical practice these methods are barely used. This study evaluates the rep...
Autores principales: | Alic, Lejla, Niessen, Wiro J., Veenland, Jifke F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203782/ https://www.ncbi.nlm.nih.gov/pubmed/25330171 http://dx.doi.org/10.1371/journal.pone.0110300 |
Ejemplares similares
-
Facilitating Tumor Functional Assessment by Spatially Relating 3D Tumor Histology and In Vivo MRI: Image Registration Approach
por: Alic, Lejla, et al.
Publicado: (2011) -
Can DCE-MRI Explain the Heterogeneity in Radiopeptide Uptake Imaged by SPECT in a Pancreatic Neuroendocrine Tumor Model?
por: Bol, Karin, et al.
Publicado: (2013) -
Automated Classification of Significant Prostate Cancer on MRI: A Systematic Review on the Performance of Machine Learning Applications
por: Castillo T., Jose M., et al.
Publicado: (2020) -
Classification of Clinically Significant Prostate Cancer on Multi-Parametric MRI: A Validation Study Comparing Deep Learning and Radiomics
por: Castillo T., Jose M., et al.
Publicado: (2021) -
Clinically significant prostate cancer detection and segmentation in low-risk patients using a convolutional neural network on multi-parametric MRI
por: Arif, Muhammad, et al.
Publicado: (2020)