Cargando…
Divergence of RNA localization between rat and mouse neurons reveals the potential for rapid brain evolution
BACKGROUND: Neurons display a highly polarized architecture. Their ability to modify their features under intracellular and extracellular stimuli, known as synaptic plasticity, is a key component of the neurochemical basis of learning and memory. A key feature of synaptic plasticity involves the del...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203888/ https://www.ncbi.nlm.nih.gov/pubmed/25301173 http://dx.doi.org/10.1186/1471-2164-15-883 |
_version_ | 1782340456165670912 |
---|---|
author | Francis, Chantal Natarajan, Shreedhar Lee, Miler T Khaladkar, Mugdha Buckley, Peter T Sul, Jai-Yoon Eberwine, James Kim, Junhyong |
author_facet | Francis, Chantal Natarajan, Shreedhar Lee, Miler T Khaladkar, Mugdha Buckley, Peter T Sul, Jai-Yoon Eberwine, James Kim, Junhyong |
author_sort | Francis, Chantal |
collection | PubMed |
description | BACKGROUND: Neurons display a highly polarized architecture. Their ability to modify their features under intracellular and extracellular stimuli, known as synaptic plasticity, is a key component of the neurochemical basis of learning and memory. A key feature of synaptic plasticity involves the delivery of mRNAs to distinct sub-cellular domains where they are locally translated. Regulatory coordination of these spatio-temporal events is critical for synaptogenesis and synaptic plasticity as defects in these processes can lead to neurological diseases. In this work, using microdissected dendrites from primary cultures of hippocampal neurons of two mouse strains (C57BL/6 and Balb/c) and one rat strain (Sprague–Dawley), we investigate via microarrays, subcellular localization of mRNAs in dendrites of neurons to assay the evolutionary differences in subcellular dendritic transcripts localization. RESULTS: Our microarray analysis highlighted significantly greater evolutionary diversification of RNA localization in the dendritic transcriptomes (81% gene identity difference among the top 5% highly expressed genes) compared to the transcriptomes of 11 different central nervous system (CNS) and non-CNS tissues (average of 44% gene identity difference among the top 5% highly expressed genes). Differentially localized genes include many genes involved in CNS function. CONCLUSIONS: Species differences in sub-cellular localization may reflect non-functional neutral drift. However, the functional categories of mRNA showing differential localization suggest that at least part of the divergence may reflect activity-dependent functional differences of neurons, mediated by species-specific RNA subcellular localization mechanisms. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-883) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4203888 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-42038882014-10-22 Divergence of RNA localization between rat and mouse neurons reveals the potential for rapid brain evolution Francis, Chantal Natarajan, Shreedhar Lee, Miler T Khaladkar, Mugdha Buckley, Peter T Sul, Jai-Yoon Eberwine, James Kim, Junhyong BMC Genomics Research Article BACKGROUND: Neurons display a highly polarized architecture. Their ability to modify their features under intracellular and extracellular stimuli, known as synaptic plasticity, is a key component of the neurochemical basis of learning and memory. A key feature of synaptic plasticity involves the delivery of mRNAs to distinct sub-cellular domains where they are locally translated. Regulatory coordination of these spatio-temporal events is critical for synaptogenesis and synaptic plasticity as defects in these processes can lead to neurological diseases. In this work, using microdissected dendrites from primary cultures of hippocampal neurons of two mouse strains (C57BL/6 and Balb/c) and one rat strain (Sprague–Dawley), we investigate via microarrays, subcellular localization of mRNAs in dendrites of neurons to assay the evolutionary differences in subcellular dendritic transcripts localization. RESULTS: Our microarray analysis highlighted significantly greater evolutionary diversification of RNA localization in the dendritic transcriptomes (81% gene identity difference among the top 5% highly expressed genes) compared to the transcriptomes of 11 different central nervous system (CNS) and non-CNS tissues (average of 44% gene identity difference among the top 5% highly expressed genes). Differentially localized genes include many genes involved in CNS function. CONCLUSIONS: Species differences in sub-cellular localization may reflect non-functional neutral drift. However, the functional categories of mRNA showing differential localization suggest that at least part of the divergence may reflect activity-dependent functional differences of neurons, mediated by species-specific RNA subcellular localization mechanisms. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-883) contains supplementary material, which is available to authorized users. BioMed Central 2014-10-09 /pmc/articles/PMC4203888/ /pubmed/25301173 http://dx.doi.org/10.1186/1471-2164-15-883 Text en © Francis et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Francis, Chantal Natarajan, Shreedhar Lee, Miler T Khaladkar, Mugdha Buckley, Peter T Sul, Jai-Yoon Eberwine, James Kim, Junhyong Divergence of RNA localization between rat and mouse neurons reveals the potential for rapid brain evolution |
title | Divergence of RNA localization between rat and mouse neurons reveals the potential for rapid brain evolution |
title_full | Divergence of RNA localization between rat and mouse neurons reveals the potential for rapid brain evolution |
title_fullStr | Divergence of RNA localization between rat and mouse neurons reveals the potential for rapid brain evolution |
title_full_unstemmed | Divergence of RNA localization between rat and mouse neurons reveals the potential for rapid brain evolution |
title_short | Divergence of RNA localization between rat and mouse neurons reveals the potential for rapid brain evolution |
title_sort | divergence of rna localization between rat and mouse neurons reveals the potential for rapid brain evolution |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203888/ https://www.ncbi.nlm.nih.gov/pubmed/25301173 http://dx.doi.org/10.1186/1471-2164-15-883 |
work_keys_str_mv | AT francischantal divergenceofrnalocalizationbetweenratandmouseneuronsrevealsthepotentialforrapidbrainevolution AT natarajanshreedhar divergenceofrnalocalizationbetweenratandmouseneuronsrevealsthepotentialforrapidbrainevolution AT leemilert divergenceofrnalocalizationbetweenratandmouseneuronsrevealsthepotentialforrapidbrainevolution AT khaladkarmugdha divergenceofrnalocalizationbetweenratandmouseneuronsrevealsthepotentialforrapidbrainevolution AT buckleypetert divergenceofrnalocalizationbetweenratandmouseneuronsrevealsthepotentialforrapidbrainevolution AT suljaiyoon divergenceofrnalocalizationbetweenratandmouseneuronsrevealsthepotentialforrapidbrainevolution AT eberwinejames divergenceofrnalocalizationbetweenratandmouseneuronsrevealsthepotentialforrapidbrainevolution AT kimjunhyong divergenceofrnalocalizationbetweenratandmouseneuronsrevealsthepotentialforrapidbrainevolution |