Cargando…
Engineering towards a complete heterologous cellulase secretome in Yarrowia lipolytica reveals its potential for consolidated bioprocessing
BACKGROUND: Yarrowia lipolytica is an oleaginous yeast capable of metabolizing glucose to lipids, which then accumulate intracellularly. However, it lacks the suite of cellulolytic enzymes required to break down biomass cellulose and cannot therefore utilize biomass directly as a carbon source. Towa...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203959/ https://www.ncbi.nlm.nih.gov/pubmed/25337149 http://dx.doi.org/10.1186/s13068-014-0148-0 |
_version_ | 1782340472800280576 |
---|---|
author | Wei, Hui Wang, Wei Alahuhta, Markus Vander Wall, Todd Baker, John O Taylor, Larry E Decker, Stephen R Himmel, Michael E Zhang, Min |
author_facet | Wei, Hui Wang, Wei Alahuhta, Markus Vander Wall, Todd Baker, John O Taylor, Larry E Decker, Stephen R Himmel, Michael E Zhang, Min |
author_sort | Wei, Hui |
collection | PubMed |
description | BACKGROUND: Yarrowia lipolytica is an oleaginous yeast capable of metabolizing glucose to lipids, which then accumulate intracellularly. However, it lacks the suite of cellulolytic enzymes required to break down biomass cellulose and cannot therefore utilize biomass directly as a carbon source. Toward the development of a direct microbial conversion platform for the production of hydrocarbon fuels from cellulosic biomass, the potential for Y. lipolytica to function as a consolidated bioprocessing strain was investigated by first conducting a genomic search and functional testing of its endogenous glycoside hydrolases. Once the range of endogenous enzymes was determined, the critical cellulases from Trichoderma reesei were cloned into Yarrowia. RESULTS: Initially, work to express T. reesei endoglucanase II (EGII) and cellobiohydrolase (CBH) II in Y. lipolytica resulted in the successful secretion of active enzymes. However, a critical cellulase, T. reesei CBHI, while successfully expressed in and secreted from Yarrowia, showed less than expected enzymatic activity, suggesting an incompatibility (probably at the post-translational level) for its expression in Yarrowia. This result prompted us to evaluate alternative or modified CBHI enzymes. Our subsequent expression of a T. reesei-Talaromyces emersonii (Tr-Te) chimeric CBHI, Chaetomium thermophilum CBHI, and Humicola grisea CBHI demonstrated remarkably improved enzymatic activities. Specifically, the purified chimeric Tr-Te CBHI showed a specific activity on Avicel that is comparable to that of the native T. reesei CBHI. Furthermore, the chimeric Tr-Te CBHI also showed significant synergism with EGII and CBHII in degrading cellulosic substrates, using either mixed supernatants or co-cultures of the corresponding Y. lipolytica transformants. The consortia system approach also allows rational volume mixing of the transformant cultures in accordance with the optimal ratio of cellulases required for efficient degradation of cellulosic substrates. CONCLUSIONS: Taken together, this work demonstrates the first case of successful expression of a chimeric CBHI with essentially full native activity in Y. lipolytica, and supports the notion that Y. lipolytica strains can be genetically engineered, ultimately by heterologous expression of fungal cellulases and other enzymes, to directly convert lignocellulosic substrates to biofuels. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13068-014-0148-0) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4203959 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-42039592014-10-22 Engineering towards a complete heterologous cellulase secretome in Yarrowia lipolytica reveals its potential for consolidated bioprocessing Wei, Hui Wang, Wei Alahuhta, Markus Vander Wall, Todd Baker, John O Taylor, Larry E Decker, Stephen R Himmel, Michael E Zhang, Min Biotechnol Biofuels Research Article BACKGROUND: Yarrowia lipolytica is an oleaginous yeast capable of metabolizing glucose to lipids, which then accumulate intracellularly. However, it lacks the suite of cellulolytic enzymes required to break down biomass cellulose and cannot therefore utilize biomass directly as a carbon source. Toward the development of a direct microbial conversion platform for the production of hydrocarbon fuels from cellulosic biomass, the potential for Y. lipolytica to function as a consolidated bioprocessing strain was investigated by first conducting a genomic search and functional testing of its endogenous glycoside hydrolases. Once the range of endogenous enzymes was determined, the critical cellulases from Trichoderma reesei were cloned into Yarrowia. RESULTS: Initially, work to express T. reesei endoglucanase II (EGII) and cellobiohydrolase (CBH) II in Y. lipolytica resulted in the successful secretion of active enzymes. However, a critical cellulase, T. reesei CBHI, while successfully expressed in and secreted from Yarrowia, showed less than expected enzymatic activity, suggesting an incompatibility (probably at the post-translational level) for its expression in Yarrowia. This result prompted us to evaluate alternative or modified CBHI enzymes. Our subsequent expression of a T. reesei-Talaromyces emersonii (Tr-Te) chimeric CBHI, Chaetomium thermophilum CBHI, and Humicola grisea CBHI demonstrated remarkably improved enzymatic activities. Specifically, the purified chimeric Tr-Te CBHI showed a specific activity on Avicel that is comparable to that of the native T. reesei CBHI. Furthermore, the chimeric Tr-Te CBHI also showed significant synergism with EGII and CBHII in degrading cellulosic substrates, using either mixed supernatants or co-cultures of the corresponding Y. lipolytica transformants. The consortia system approach also allows rational volume mixing of the transformant cultures in accordance with the optimal ratio of cellulases required for efficient degradation of cellulosic substrates. CONCLUSIONS: Taken together, this work demonstrates the first case of successful expression of a chimeric CBHI with essentially full native activity in Y. lipolytica, and supports the notion that Y. lipolytica strains can be genetically engineered, ultimately by heterologous expression of fungal cellulases and other enzymes, to directly convert lignocellulosic substrates to biofuels. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13068-014-0148-0) contains supplementary material, which is available to authorized users. BioMed Central 2014-10-16 /pmc/articles/PMC4203959/ /pubmed/25337149 http://dx.doi.org/10.1186/s13068-014-0148-0 Text en © Wei et al.; licensee BioMed Central Ltd. 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Wei, Hui Wang, Wei Alahuhta, Markus Vander Wall, Todd Baker, John O Taylor, Larry E Decker, Stephen R Himmel, Michael E Zhang, Min Engineering towards a complete heterologous cellulase secretome in Yarrowia lipolytica reveals its potential for consolidated bioprocessing |
title | Engineering towards a complete heterologous cellulase secretome in Yarrowia lipolytica reveals its potential for consolidated bioprocessing |
title_full | Engineering towards a complete heterologous cellulase secretome in Yarrowia lipolytica reveals its potential for consolidated bioprocessing |
title_fullStr | Engineering towards a complete heterologous cellulase secretome in Yarrowia lipolytica reveals its potential for consolidated bioprocessing |
title_full_unstemmed | Engineering towards a complete heterologous cellulase secretome in Yarrowia lipolytica reveals its potential for consolidated bioprocessing |
title_short | Engineering towards a complete heterologous cellulase secretome in Yarrowia lipolytica reveals its potential for consolidated bioprocessing |
title_sort | engineering towards a complete heterologous cellulase secretome in yarrowia lipolytica reveals its potential for consolidated bioprocessing |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203959/ https://www.ncbi.nlm.nih.gov/pubmed/25337149 http://dx.doi.org/10.1186/s13068-014-0148-0 |
work_keys_str_mv | AT weihui engineeringtowardsacompleteheterologouscellulasesecretomeinyarrowialipolyticarevealsitspotentialforconsolidatedbioprocessing AT wangwei engineeringtowardsacompleteheterologouscellulasesecretomeinyarrowialipolyticarevealsitspotentialforconsolidatedbioprocessing AT alahuhtamarkus engineeringtowardsacompleteheterologouscellulasesecretomeinyarrowialipolyticarevealsitspotentialforconsolidatedbioprocessing AT vanderwalltodd engineeringtowardsacompleteheterologouscellulasesecretomeinyarrowialipolyticarevealsitspotentialforconsolidatedbioprocessing AT bakerjohno engineeringtowardsacompleteheterologouscellulasesecretomeinyarrowialipolyticarevealsitspotentialforconsolidatedbioprocessing AT taylorlarrye engineeringtowardsacompleteheterologouscellulasesecretomeinyarrowialipolyticarevealsitspotentialforconsolidatedbioprocessing AT deckerstephenr engineeringtowardsacompleteheterologouscellulasesecretomeinyarrowialipolyticarevealsitspotentialforconsolidatedbioprocessing AT himmelmichaele engineeringtowardsacompleteheterologouscellulasesecretomeinyarrowialipolyticarevealsitspotentialforconsolidatedbioprocessing AT zhangmin engineeringtowardsacompleteheterologouscellulasesecretomeinyarrowialipolyticarevealsitspotentialforconsolidatedbioprocessing |