Cargando…
A Low Computational Cost Algorithm for REM Sleep Detection Using Single Channel EEG
The push towards low-power and wearable sleep systems requires using minimum number of recording channels to enhance battery life, keep processing load small and be more comfortable for the user. Since most sleep stages can be identified using EEG traces, enormous power savings could be achieved by...
Autores principales: | Imtiaz, Syed Anas, Rodriguez-Villegas, Esther |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204008/ https://www.ncbi.nlm.nih.gov/pubmed/25113231 http://dx.doi.org/10.1007/s10439-014-1085-6 |
Ejemplares similares
-
REM Sleep Stage Identification with Raw Single-Channel EEG
por: Toban, Gabriel, et al.
Publicado: (2023) -
Single‐channel EEG classification of sleep stages based on REM microstructure
por: Rechichi, Irene, et al.
Publicado: (2021) -
A Cough-Based Algorithm for Automatic Diagnosis of Pertussis
por: Pramono, Renard Xaviero Adhi, et al.
Publicado: (2016) -
REM Sleep EEG Activity and Clinical Correlates in Adults With Autism
por: Gagnon, Katia, et al.
Publicado: (2021) -
Evaluation of a Single-Channel EEG-Based Sleep Staging Algorithm
por: Zhao, Shanguang, et al.
Publicado: (2022)